Do you want to publish a course? Click here

An Optimistic Acceleration of AMSGrad for Nonconvex Optimization

82   0   0.0 ( 0 )
 Added by Ping Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a new variant of AMSGrad, a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive mini-batch gradients and leverages its underlying structure making the gradients sequentially predictable. By exploiting the predictability and ideas from optimistic online learning, the proposed algorithm can accelerate the convergence and increase sample efficiency. After establishing a tighter upper bound under some convexity conditions on the regret, we offer a complimentary view of our algorithm which generalizes the offline and stochastic version of nonconvex optimization. In the nonconvex case, we establish a non-asymptotic convergence bound independently of the initialization. We illustrate the practical speedup on several deep learning models via numerical experiments.



rate research

Read More

Existing nonconvex statistical optimization theory and methods crucially rely on the correct specification of the underlying true statistical models. To address this issue, we take a first step towards taming model misspecification by studying the high-dimensional sparse phase retrieval problem with misspecified link functions. In particular, we propose a simple variant of the thresholded Wirtinger flow algorithm that, given a proper initialization, linearly converges to an estimator with optimal statistical accuracy for a broad family of unknown link functions. We further provide extensive numerical experiments to support our theoretical findings.
Bayesian coresets have emerged as a promising approach for implementing scalable Bayesian inference. The Bayesian coreset problem involves selecting a (weighted) subset of the data samples, such that the posterior inference using the selected subset closely approximates the posterior inference using the full dataset. This manuscript revisits Bayesian coresets through the lens of sparsity constrained optimization. Leveraging recent advances in accelerated optimization methods, we propose and analyze a novel algorithm for coreset selection. We provide explicit convergence rate guarantees and present an empirical evaluation on a variety of benchmark datasets to highlight our proposed algorithms superior performance compared to state-of-the-art on speed and accuracy.
Solving statistical learning problems often involves nonconvex optimization. Despite the empirical success of nonconvex statistical optimization methods, their global dynamics, especially convergence to the desirable local minima, remain less well understood in theory. In this paper, we propose a new analytic paradigm based on diffusion processes to characterize the global dynamics of nonconvex statistical optimization. As a concrete example, we study stochastic gradient descent (SGD) for the tensor decomposition formulation of independent component analysis. In particular, we cast different phases of SGD into diffusion processes, i.e., solutions to stochastic differential equations. Initialized from an unstable equilibrium, the global dynamics of SGD transit over three consecutive phases: (i) an unstable Ornstein-Uhlenbeck process slowly departing from the initialization, (ii) the solution to an ordinary differential equation, which quickly evolves towards the desirable local minimum, and (iii) a stable Ornstein-Uhlenbeck process oscillating around the desirable local minimum. Our proof techniques are based upon Stroock and Varadhans weak convergence of Markov chains to diffusion processes, which are of independent interest.
The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic Path-Integrated Differential EstimatoR EM (SPIDER-EM) and derive complexity bounds for this novel algorithm, designed to solve smooth nonconvex finite-sum optimization problems. We show that it reaches the same state of the art complexity bounds as SPIDER-EM; and provide conditions for a linear rate of convergence. Numerical results support our findings.
We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback-Leibler (KL) divergence as the objective functional. We show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated rates can be obtained for a class of nonconvex functions with the Langevin algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا