Do you want to publish a course? Click here

Review of High-Quality Random Number Generators

55   0   0.0 ( 0 )
 Added by Frederick James
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is a review of pseudorandom number generators (RNGs) of the highest quality, suitable for use in the most demanding Monte Carlo calculations. All the RNGs we recommend here are based on the Kolmogorov-Anosov theory of mixing in classical mechanical systems, which guarantees under certain conditions and in certain asymptotic limits, that points on the trajectories of these systems can be used to produce random number sequences of exceptional quality. We outline this theory of mixing and establish criteria for deciding which RNGs are sufficiently good approximations to the ideal mathematical systems that guarantee highest quality. The well-known RANLUX (at highest luxury level) and its recent variant RANLUX++ are seen to meet our criteria, and some of the propos



rate research

Read More

The parameters tuning of event generators is a research topic characterized by complex choices: the generator response to parameter variations is difficult to obtain on a theoretical basis, and numerical methods are hardly tractable due to the long computational times required by generators. Event generator tuning has been tackled by parametrisation-based techniques, with the most successful one being a polynomial parametrisation. In this work, an implementation of tuning procedures based on artificial neural networks is proposed. The implementation was tested with closure testing and experimental measurements from the ATLAS experiment at the Large Hadron Collider.
We review the properties of quarkonia under strong magnetic fields. The main phenomena are (i) mixing between different spin eigenstates, (ii) quark Landau levels and deformation of wave function, (iii) modification of $bar{Q}Q$ potential, and (iv) the motional Stark effect. For theoretical approaches, we review (i) constituent quark models, (ii) effective Lagrangians, (iii) QCD sum rules, and (iv) holographic approaches.
We deal with randomness-quantifiers and concentrate on their ability do discern the hallmark of chaos in time-series used in connection with pseudo random number generators (PRNG). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely, i) its invariant measure and ii) the mixing constant. This is of help in answering two questions that arise in applications, that is, (1) which is the best PRNG among the available ones? and (2) If a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure?. Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.
58 - Boris Ryabko 2019
The problem of constructing effective statistical tests for random number generators (RNG) is considered. Currently, statistical tests for RNGs are a mandatory part of cryptographic information protection systems, but their effectiveness is mainly estimated based on experiments with various RNGs. We find an asymptotic estimate for the p-value of an optimal test in the case where the alternative hypothesis is a known stationary ergodic source, and then describe a family of tests each of which has the same asymptotic estimate of the p-value for any (unknown) stationary ergodic source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا