Fully Distributed DC Optimal Power Flow Based on Distributed Economic Dispatch and Distributed State Estimation


Abstract in English

Optimal power flow (OPF) is an important technique for power systems to achieve optimal operation while satisfying multiple constraints. The traditional OPF are mostly centralized methods which are executed in the centralized control center. This paper introduces a totally Distributed DC Optimal Power Flow (DDCOPF) method for future power systems which have more and more distributed generators. The proposed method is based on the Distributed Economic Dispatch (DED) method and the Distributed State Estimation (DSE) method. In this proposed scheme, the DED method is used to achieve the optimal power dispatch with the lowest cost, and the DSE method provides power flow information of the power system to the proposed DDCOPF algorithm. In the proposed method, the Auto-Regressive (AR) model is used to predict the load variation so that the proposed algorithm can prevent overflow. In addition, a method called constraint algorithm is developed to correct the results of DED with the proposed correction algorithm and penalty term so that the constraints for the power system will not be violated. Different from existing research, the proposed method is completely distributed without need for any centralized facility.

Download