Non-Hermitian dynamics without dissipation in quantum systems


Abstract in English

Models based on non-Hermitian Hamiltonians can exhibit a range of surprising and potentially useful phenomena. Physical realizations typically involve couplings to sources of incoherent gain and loss; this is problematic in quantum settings, because of the unavoidable fluctuations associated with this dissipation. Here, we present several routes for obtaining unconditional non-Hermitian dynamics in non-dissipative quantum systems. We exploit the fact that quadratic bosonic Hamiltonians that do not conserve particle number give rise to non-Hermitian dynamical matrices. We discuss the nature of these mappings from non-Hermitian to Hermitian Hamiltonians, and explore applications to quantum sensing, entanglement dynamics and topological band theory. The systems we discuss could be realized in a variety of photonic and phononic platforms using the ubiquitous resource of parametric driving.

Download