FeNi films with the stripe domain pattern are prepared by electrodeposition and sputtering methods. The composition, thickness, phase structure, magnetic domain, static magnetic parameters, and quality factor, as well as dynamic properties of the two films, are respectively performed. The results show the spin state in stripe domain were highly dependent on the direction of stripe domain, and the dynamic microwave properties are selectively excited, emerging the dynamic hysteresis, the acoustic mode, optical mode and perpendicular spin standing wave mode response. The results are further studied by micromagnetic simulation to illuminate the spin contribution of stripe domain for the different modes, and finally using the modified resonance equations to descript the microwave excitations of different modes as well as their resonance line width and permeability. The results may provide a method and thought for the possible applications of stripe domain in microwave excitation spintronics.