We report on measurements of the binding energies of several weakly bound vibrational states of the paramagnetic $^{174}$Yb$^{6}$Li molecule in the electronic ground state using two-photon spectroscopy in an ultracold atomic mixture confined in an optical dipole trap. We theoretically analyze the experimental spectrum to obtain an accurate description of the long-range potential of the ground state molecule. Based on the measured binding energies, we arrive at an improved value of the interspecies $s$-wave scattering length $a_{s0}=30$ $a_0$. Employing coherent two-photon spectroscopy we also observe the creation of dark atom-molecule superposition states in the heteronuclear Yb-Li system. This work is an important step towards the efficient production of ultracold YbLi molecules via association from an ultracold atomic mixture.