We present $Hubble Space Telescope$ ($HST$) imaging and grism spectroscopy of a strongly lensed LIRG at $z=0.816$, SGAS 143845.1$+$145407, and use the magnification boost of gravitational lensing to study the distribution of star formation throughout this galaxy. Based on the $HST$ imaging data, we create a lens model for this system; we compute the mass distribution and magnification map of the $z=0.237$ foreground lens. We find that the magnification of the lensed galaxy ranges between $2$ and $10$, with a total magnification (measured over all the images of the source) of $mu=11.8^{+4.6}_{-2.4}$. We find that the total projected mass density within $sim34$ kpc of the brightest cluster galaxy is $6.0^{+0.3}_{-0.7}times10^{12},M_{odot}$. Using the lens model we create a source reconstruction for SGAS 143845.1$+$145407, which paired with a faint detection of H$alpha$ in the grism spectroscopy, allows us to finally comment directly on the distribution of star formation in a $zsim1$ LIRG. We find widespread star formation across this galaxy, in agreement with the current understanding of these objects. However, we note a deficit of H$alpha$ emission in the nucleus of SGAS 143845.1$+$145407, likely due to dust extinction.