No Arabic abstract
Some bacteria and archaea possess an immune system, based on the CRISPR-Cas mechanism, that confers adaptive immunity against phage. In such species, individual bacteria maintain a cassette of viral DNA elements called spacers as a memory of past infections. The typical cassette contains a few dozen spacers. Given that bacteria can have very large genomes, and since having more spacers should confer a better memory, it is puzzling that so little genetic space would be devoted by bacteria to their adaptive immune system. Here, we identify a fundamental trade-off between the size of the bacterial immune repertoire and effectiveness of response to a given threat, and show how this tradeoff imposes a limit on the optimal size of the CRISPR cassette.
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given data sets. This procedure is well-developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency, but also discrete objects such as B cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Levy flights in the space of mutations model time evolution of bacterial DNA. Parameters in the model are adjusted in order to fit observations coming from the Long Time Evolution Experiment with E. Coli.
Bacteria and their bacteriophages are the most abundant, widespread and diverse groups of biological entities on the planet. In an attempt to understand how the interactions between bacteria, virulent phages and temperate phages might affect the diversity of these groups, we developed a novel stochastic network model for examining the co-evolution of these ecologies. In our approach, nodes represent whole species or strains of bacteria or phages, rather than individuals, with speciation and extinction modelled by duplication and removal of nodes. Phage-bacteria links represent host-parasite relationships and temperate-virulent phage links denote prophage-encoded resistance. The effect of horizontal transfer of genetic information between strains was also included in the dynamical rules. The observed networks evolved in a highly dynamic fashion but the ecosystems were prone to collapse (one or more entire groups going extinct). Diversity could be stably maintained in the model only if the probability of speciation was independent of the diversity. Such an effect could be achieved in real ecosystems if the speciation rate is primarily set by the availability of ecological niches.
During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems. In this work we study how the dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is crucial for a better understanding of the role played by the bacterial growth on the organoleptic properties, and for the quality evaluation and risk assessment of food products. We therefore analyze the time behaviour, in fresh fish specimens, of sensory characteristics starting from the growth curves of two spoilage bacterial communities. The theoretical study, initially based on a deterministic model, exploits experimental temperature profiles. As a first step, a model of predictive microbiology is used to reproduce the experimental behaviour of the two bacterial populations. Afterwards, the theoretical bacterial growths are converted, through suitable differential equations, into sensory scores, based on the Quality Index Method (QIM), a scoring system for freshness and quality sensory estimation of fishery products. As a third step, the theoretical curves of QIM scores are compared with the experimental data obtained by sensory analysis. Finally, the differential equations for QIM scores are modified by adding terms of multiplicative white noise, which mimics the effects of uncertainty and variability in sensory analysis. A better agreement between experimental and theoretical QIM scores is observed, in some cases, in the presence of suitable values of noise intensity respect to the deterministic analysis.
The division of labor (DOL) and task allocation among groups of ants living in a colony is thought to be highly efficient, and key to the robust survival of a colony. A great deal of experimental and theoretical work has been done toward gaining a clear understanding of the evolution of, and underlying mechanisms of these phenomena. Much of this research has utilized mathematical modeling. Here we continue this tradition by developing a mathematical model for a particular aspect of task allocation, known as age-related repertoire expansion, that has been observed in the minor workers of the ant species emph{Pheidole dentata}. In fact, we present a relatively broad mathematical modeling framework based on the dynamics of the frequency with which members of specific age groups carry out distinct tasks. We apply our modeling approach to a specific task allocation scenario, and compare our theoretical results with experimental data. It is observed that the model predicts perceived behavior, and provides a possible explanation for the aforementioned experimental results.