Do you want to publish a course? Click here

The MUSE Ultra Deep Field (MUDF). I. Discovery of a group of Ly$alpha$ nebulae associated with a bright $zapprox 3.23$ quasar pair

73   0   0.0 ( 0 )
 Added by Elisabeta Lusso Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first results from Multi Unit Spectroscopic Explorer (MUSE) observations at the Very Large Telescope in the MUSE Ultra Deep Field (MUDF), a $approx 1.2times 1.4$ arcmin$^2$ region for which we are collecting $approx$200 hours of integral field spectroscopy. The $approx 40$-hour observation completed to date reveals the presence of a group of three Ly$alpha$ nebulae associated with a bright quasar pair at $zsimeq3.23$ with projected separation of $approx 500rm~kpc$. Two of the nebulae are physically associated with the quasars which are likely powering the Ly$alpha$ emission, and extend for $gtrsim 100~rm kpc$ at a surface brightness level of $approx 6times 10^{-19}~rm erg~s^{-1}~cm^{-2}~arcsec^{-2}$. A third smaller ($approx$35 kpc) nebula lies at a velocity offset of $approx 1550$ km s$^{-1}$. Despite their clustered nature, the two large nebulae have properties similar to those observed in isolated quasars and exhibit no sharp decline in flux at the current depth, suggesting an even more extended distribution of gas around the quasars. We interpret the shape and the alignment of the two brighter nebulae as suggestive of the presence of an extended structure connecting the two quasar host galaxies, as seen for massive galaxies forming within gas-rich filaments in cosmological simulations.

rate research

Read More

170 - Toma Bu{a}descu 2017
Bright Ly-$alpha$ blobs (LABs) --- extended nebulae with sizes of $sim$100kpc and Ly-$alpha$ luminosities of $sim$10$^{44}$erg s$^{-1}$ --- often reside in overdensities of compact Ly-$alpha$ emitters (LAEs) that may be galaxy protoclusters. The number density, variance, and internal kinematics of LABs suggest that they themselves trace group-like halos. Here we test this hierarchical picture, presenting deep, wide-field Ly-$alpha$ narrowband imaging of a 1$^circ$ $times$ 0.5$^circ$ region around a LAB pair at $z$ = 2.3 discovered previously by a blind survey. We find 183 Ly-$alpha$ emitters, including the original LAB pair and three new LABs with Ly-$alpha$ luminosities of (0.9--1.3)$times$10$^{43}$erg s$^{-1}$ and isophotal areas of 16--24 arcsec$^2$. Using the LAEs as tracers and a new kernel density estimation method, we discover a large-scale overdensity (Bo{o}tes J1430+3522) with a surface density contrast of $delta_{Sigma}$ = 2.7, a volume density contrast of $delta$ $sim$ 10.4, and a projected diameter of $approx$ 20 comoving Mpc. Comparing with cosmological simulations, we conclude that this LAE overdensity will evolve into a present-day Coma-like cluster with $log{(M/M_odot)}$ $sim$ $15.1pm0.2$. In this and three other wide-field LAE surveys re-analyzed here, the extents and peak amplitudes of the largest LAE overdensities are similar, not increasing with survey size, implying that they were indeed the largest structures then and do evolve into rich clusters today. Intriguingly, LABs favor the outskirts of the densest LAE concentrations, i.e., intermediate LAE overdensities of $delta_Sigma = 1 - 2$. We speculate that these LABs mark infalling proto-groups being accreted by the more massive protocluster.
We exploit wide-field Ly$alpha$ imaging with Subaru to probe the environment around TN J1338-1942, a powerful radio galaxy with a >100 kpc Ly$alpha$ halo at z=4.11. We used a sample of Ly$alpha$ emitters (LAEs) down to $log(L_{rm Lyalpha} [erg, s^{-1}])sim 42.8$ to measure the galaxy density around TNJ1338, compared to a control sample from a blank field taken with the same instrument. We found that TNJ1338 resides in a region with a peak overdensity of $delta_{rm LAE}=2.8pm 0.5$ on scales of $8, h^{-1}rm Mpc$ (on the sky) and $112, h^{-1}rm Mpc$ (line of sight) in comoving coordinates. Adjacent to this overdensity, we found a strong underdensity where virtually no LAEs are detected. We used a semi-analytical model of LAEs derived from the Millennium Simulation to compare our results with theoretical predictions. While the theoretical density distribution is consistent with the blank field, overdense regions such as that around TNJ1338 are very rare, with a number density of $6.4times 10^{-8}rm Mpc^{-3}$ (comoving), corresponding to the densest < 0.4 percentile at $zsimeq 4.1$. We also found that the Ly$alpha$ luminosity function in the TNJ1338 field differs from that in the blank field: the number of bright LAEs ($log(L_{rm Lyalpha}[erg,s^{-1}]) gtrsim 43.3$) is enhanced, while the number of fainter LAEs is relatively suppressed. These results suggest that some powerful radio galaxies associated with Ly$alpha$ nebulae reside in extreme overdensities on $sim 3$--$6, rm Mpc$ scales, where star-formation and AGN activity may be enhanced via frequent galaxy mergers or high rates of gas accretion from the surroundings.
Enormous Ly$alpha$ nebulae, extending over 300-500,kpc around quasars, represent the pinnacle of galaxy and cluster formation. Here we present IRAM Plateau de Bure Interferometer observations of the enormous Ly$alpha$ nebulae `Slug ($z$=$2.282$) and `Jackpot ($z$=$2.041$). Our data reveal bright, synchrotron emission associated with the two radio-loud AGN embedded in the targeted nebulae, as well as molecular gas, as traced via the CO(3-2) line, in three galaxies (two sources in the Slug, and one in the Jackpot). All of the CO emission is associated with galaxies detected in their rest-frame UV stellar emission. The total mass in molecular gas of these three galaxies [$sim (3-5)times10^{10}$ M$_odot$] is comparable with the total ionized gas mass responsible for the diffuse nebular emission. Our observations place limits on the molecular gas emission in the nebulae: The molecular gas surface density is $Sigma_{rm H2}<12-25$ M$_odot$ pc$^{-2}$ for the Slug nebula and $Sigma_{rm H2}<34-68$ M$_odot$ pc$^{-2}$ for the Jackpot nebula. These are consistent with the expected molecular gas surface densities, as predicted via photoionization models of the rest-frame UV line emission in the nebulae, and via Ly$alpha$ absorption in the Jackpot nebula. Compared to other radio--loud quasars at $z>1$, and high-redshift radio--loud galaxies, we do not find any strong trends relating the molecular gas reservoirs, the radio power, and the Ly$alpha$ luminosities of these systems. The significant step in sensitivity required to achieve a detection of the molecular gas from the nebulae, if present, will require a substantial time investment with JVLA, NOEMA, or ALMA.
We present the results from a MUSE survey of twelve $zsimeq3.15$ quasars, which were selected to be much fainter (20<i<23) than in previous studies of Giant Ly$alpha$ Nebulae around the brightest quasars (16.6<i<18.7). We detect HI Ly$alpha$ nebulae around 100% of our target quasars, with emission extending to scales of at least 60 physical kpc, and up to 190 pkpc. We explore correlations between properties of the nebulae and their host quasars, with the goal of connecting variations in the properties of the illuminating QSO to the response in nebular emission. We show that the surface brightness profiles of the nebulae are similar to those of nebulae around bright quasars, but with a lower normalization. Our targeted quasars are on average 3.7 magnitudes (~30 times) fainter in UV continuum than our bright reference sample, and yet the nebulae around them are only 4.3 times fainter in mean Ly$alpha$ surface brightness, measured between 20 and 50 pkpc. We find significant correlations between the surface brightness of the nebula and the luminosity of the quasar in both UV continuum and Ly$alpha$. The latter can be interpreted as evidence for a substantial contribution from unresolved inner parts of the nebulae to the narrow components seen in the Ly$alpha$ lines of some of our faint quasars, possibly from the inner CGM or from the host galaxys ISM.
Direct Ly $alpha$ imaging of intergalactic gas at $zsim2$ has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly $alpha$ nebulae around 17 bright radio-quiet quasars at $3<z<4$ that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly $alpha$ nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes $approx-1.8$. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively cold (T$sim$10$^4$K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at $3<z<4$ independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا