Do you want to publish a course? Click here

A New Class of X-Ray Tails of Early-Type Galaxies and Subclusters in Galaxy Clusters - Slingshot Tails vs Ram Pressure Stripped Tails

145   0   0.0 ( 0 )
 Added by Alex Sheardown
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that there is a new class of gas tails - slingshot tails - which form as a subhalo (i.e. a subcluster or early-type cluster galaxy) moves away from the cluster center towards the apocenter of its orbit. These tails can point perpendicular or even opposite to the subhalo direction of motion, not tracing the recent orbital path. Thus, the observed tail direction can be misleading, and we caution against naive conclusions regarding the subhalos direction of motion based on the tail direction. A head-tail morphology of a galaxys or subclusters gaseous atmosphere is usually attributed to ram pressure stripping and the widely applied conclusion is that gas stripped tail traces the most recent orbit. However, during the slingshot tail stage, the subhalo is not being ram pressure stripped (RPS) and the tail is shaped by tidal forces more than just the ram pressure. Thus, applying a classic RPS scenario to a slingshot tail leads not only to an incorrect conclusion regarding the direction of motion, but also to incorrect conclusions in regard to the subhalo velocity, expected locations of shear flows, instabilities and mixing. We describe the genesis and morphology of slingshot tails using data from binary cluster merger simulations, discuss their observable features and how to distinguish them from classic RPS tails. We identify three examples from the literature that are not RPS tails but slingshot tails and discuss other potential candidates.



rate research

Read More

Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and HI emission with the Very Large Array in its B-configuration in two fields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 $mu$Jy per 4 beam respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H$alpha$ emission by a factor of $sim$7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their IR emission by a factor of $sim$2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present HI detections in three RPS galaxies and upper limits for the other RPS galaxies. The cold gas in D100s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data.
Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP) program, we compare the integrated Star Formation Rate- Mass relation (SFR-M_ast) relation of 42 cluster galaxies undergoing ram pressure stripping (stripping galaxies) to that of 32 field and cluster undisturbed galaxies. Theoretical predictions have so far led to contradictory conclusions about whether ram pressure can enhance the star formation in the gas disks and tails or not and until now a statistically significant observed sample of stripping galaxies was lacking. We find that stripping galaxies occupy the upper envelope of the control sample SFR-M_ast relation, showing a systematic enhancement of the SFR at any given mass. The star formation enhancement occurs in the disk (0.2 dex), and additional star formation takes place in the tails. Our results suggest that strong ram pressure stripping events can moderately enhance the star formation also in the disk prior to gas removal.
Jellyfish galaxies in clusters are key tools to understand environmental processes at work in dense environments. The advent of Integral Field Spectroscopy has recently allowed to study a significant sample of stripped galaxies in the cluster environment at z$sim 0.05$, through the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. However, optical spectroscopy can only trace the ionized gas component through the H$_{alpha}$ emission that can be spatially resolved on kpc scale at this redshift. The complex interplay between the various gas phases (ionized, neutral, molecular) is however yet to be understood. We report here the detection of large amounts of molecular gas both in the tails and in the disks of 4 jellyfish galaxies from the GASP sample with stellar masses $sim 3.5times 10^{10}-3times 10^{11} M_{odot}$, showing strong stripping. The mass of molecular gas that we measure in the tails amounts to several $10^9 M_{odot}$ and the total mass of molecular gas ranges between 15 and 100 % of the galaxy stellar mass. The molecular gas content within the galaxies is compatible with the one of normal spiral galaxies, suggesting that the molecular gas in the tails has been formed in-situ. We find a clear correlation between the ionized gas emission $rm Halpha$ and the amount of molecular gas. The CO velocities measured from APEX data are not always coincident with the underlying $rm Halpha$ emitting knots, and the derived Star Formation Efficiencies appear to be very low.
130 - Ming Sun , Chong Ge , Rongxin Luo 2021
The impact of ram pressure stripping (RPS) on galaxy evolution has been studied for over forty years. Recent multi-wavelength data have revealed many examples of galaxies undergoing RPS, often accompanied with multi-phase tails. As energy transfer in the multi-phase medium is an outstanding question in astrophysics, RPS galaxies are great objects to study. Despite the recent burst of observational evidence, the relationship between gas in different phases in the RPS tails is poorly known. Here we report, for the first time, a strong linear correlation between the X-ray surface brightness (SB$_{rm X}$) and the H$alpha$ surface brightness (SB$_{rm Halpha}$) of the diffuse gas in the RPS tails at $sim$ 10 kpc scales, as SB$_{rm X}$/SB$_{rm Halpha} sim$ 3.6. This discovery supports the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM) as the origin of the multi-phase RPS tails. The established relation in stripped tails, also in comparison with the likely similar correlation in similar environments like X-ray cool cores and galactic winds, provides an important test for models of energy transfer in the multi-phase gas. It also indicates the importance of the H$alpha$ data for our understanding of the ICM clumping and turbulence.
Although many galaxies in the Virgo cluster are known to have lost significant amounts of HI gas, only about a dozen features are known where the HI extends significantly outside its parent galaxy. Previous numerical simulations have predicted that HI removed by ram pressure stripping should have column densities far in excess of the sensitivity limits of observational surveys. We construct a simple model to try and quantify how many streams we might expect to detect. This accounts for the expected random orientation of the streams in position and velocity space as well as the expected stream length and mass of stripped HI. Using archival data from the Arecibo Galaxy Environment Survey, we search for any streams which might previously have been missed in earlier analyses. We report the confident detection of ten streams as well as sixteen other less sure detections. We show that these well-match our analytic predictions for which galaxies should be actively losing gas, however the mass of the streams is typically far below the amount of missing HI in their parent galaxies, implying that a phase change and/or dispersal renders the gas undetectable. By estimating the orbital timescales we estimate that dissolution rates of 1-10 Msolar/yr are able to explain both the presence of a few long, massive streams and the greater number of shorter, less massive features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا