This paper explores the relation between the structure of fibre bundles akin to those associated to a closed almost nonnegatively sectionally curved manifold and rational homotopy theory.
For a pointed topological space $X$, we use an inductive construction of a simplicial resolution of $X$ by wedges of spheres to construct a higher homotopy structure for $X$ (in terms of chain complexes of spaces). This structure is then used to define a collection of higher homotopy invariants which suffice to recover $X$ up to weak equivalence. It can also be used to distinguish between different maps $f$ from $X$ to $Y$ which induce the same morphism on homotopy groups $f_*$ from $pi_* X$ to $pi_* Y$.
We generalize most of the known Ricci flow invariant non-negative curvature conditions to less restrictive negative bounds that remain sufficiently controlled for a short time. As an illustration of the contents of the paper, we prove that metrics whose curvature operator has eigenvalues greater than $-1$ can be evolved by the Ricci flow for some uniform time such that the eigenvalues of the curvature operator remain greater than $-C$. Here the time of existence and the constant $C$ only depend on the dimension and the degree of non-collapsedness. We obtain similar generalizations for other invariant curvature conditions, including positive biholomorphic curvature in the Kaehler case. We also get a local version of the main theorem. As an application of our almost preservation results we deduce a variety of gap and smoothing results of independent interest, including a classification for non-collapsed manifolds with almost non-negative curvature operator and a smoothing result for singular spaces coming from sequences of manifolds with lower curvature bounds. We also obtain a short-time existence result for the Ricci flow on open manifolds with almost non-negative curvature (without requiring upper curvature bounds).
We show the non-existence results are essential for all the previous known applications of the Bauer-Furuta stable homotopy Seiberg-Witten invariants. As an example, we present a unified proof of the adjunction inequalities. We also show that the nilpotency phenomenon explains why the Bauer-Furuta stable homotopy Seiberg-Witten invariants are not enough to prove 11/8-conjecture.
We prove a nilpotency theorem for the Bauer-Furuta stable homotopy Seiberg-Witten invariants for smooth closed 4-manifolds with trivial first Betti number.
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the principal curvatures. In this short review, we discuss quantitative stability results regarding Alexandrovs theorem which have been obtained by the author in recent years. In particular, we consider hypersurfaces having mean curvature close to a constant and we quantitatively describe the proximity to a single sphere or to a collection of tangent spheres in terms of the oscillation of the mean curvature. Moreover, we also consider the problem in a non local setting, and we show that the non local effect gives a stronger rigidity to the problem and prevents the appearance of bubbling.