No Arabic abstract
In a previous paper, the authors proved that Milnor link-homotopy invariants modulo $n$ classify classical string links up to $2n$-move and link-homotopy. As analogues to the welded case, in terms of Milnor invariants, we give here two classifications of welded string links up to $2n$-move and self-crossing virtualization, and up to $V^{n}$-move and self-crossing virtualization, respectively.
Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$. The classification induces that if two string links are equivalent up to $2n$-moves for every $n>0$, then they are link-homotopic.
Let $n$ be a positive integer. M. K. Dabkowski and J. H. Przytycki introduced the $n$th Burnside group of links which is preserved by $n$-moves, and proved that for any odd prime $p$ there exist links which are not equivalent to trivial links up to $p$-moves by using their $p$th Burnside groups. This gives counterexamples for the Montesinos-Nakanishi $3$-move conjecture. In general, it is hard to distinguish $p$th Burnside groups of a given link and a trivial link. We give a necessary condition for which $p$th Burnside groups are isomorphic to those of trivial links. The necessary condition gives us an efficient way to distinguish $p$th Burnside groups of a given link and a trivial link. As an application, we show that there exist links, each of which is not equivalent to a trivial link up to $p$-moves for any odd prime $p$.
For a classical link, Milnor defined a family of isotopy invariants, called Milnor $overline{mu}$-invariants. Recently, Chrisman extended Milnor $overline{mu}$-invariants to welded links by a topological approach. The aim of this paper is to show that Milnor $overline{mu}$-invariants can be extended to welded links by a combinatorial approach. The proof contains an alternative proof for the invariance of the original $overline{mu}$-invariants of classical links.
We prove that the crossing changes, Delta moves, and sharp moves are unknotting operations on welded knots.
Oikawa defined an unknotting operation on virtual knots, called a CF-move, and gave a classification of 2-component virtual links up to CF-moves by the virtual linking number and his $n$-invariant. In particular, it was proved that a CF-move characterizes the information contained in the virtual linking number for 2-component odd virtual links. In this paper, we extend this result by classifying odd virtual links and almost odd virtual links with arbitrary number of components up to CF-moves, using the virtual linking number. Moreover, we extend Oikawas $n$-invariant and introduce two invariants for 3-component even virtual links. Using these invariants together with the virtual linking number, we classify 3-component even virtual links up to CF-moves. As a result, a classification of 3-component virtual links up to CF-moves is provided.