We study the time-independent scattering of a planar gravitational wave propagating in the curved spacetime of a compact body with a polytropic equation of state. We begin by considering the geometric-optics limit, in which the gravitational wave propagates along null geodesics of the spacetime; we show that a wavefront passing through a neutron star of tenuity $R/M = 6$ will be focussed at a cusp caustic near the stars surface. Next, using the linearized Einstein Field Equations on a spherically-symmetric spacetime, we construct the metric perturbations in the odd and even parity sectors; and, with partial-wave methods, we numerically compute the gravitational scattering cross section from helicity-conserving and helicity-reversing amplitudes. At long wavelengths, the cross section is insensitive to stellar structure and, in the limit $M omega rightarrow 0$, it reduces to the known low-frequency approximation of the black hole case. At higher frequencies $M omega gtrsim 1$, the gravitational wave probes the internal structure of the body. In essence, we find that the gravitational wave cross section is similar to that for a massless scalar field, although with subtle effects arising from the non-zero helicity-reversing amplitude, and the coupling in the even-parity sector between the gravitational wave and the fluid of the body. The cross section exhibits emph{rainbow scattering} with an Airy-type oscillation superposed on a Rutherford cross section. We show that the rainbow angle, which arises from a stationary point in the geodesic deflection function, depends on the polytropic index. In principle, rainbow scattering provides a diagnostic of the equation of state of the compact body; but, in practice, this requires a high-frequency astrophysical source of gravitational waves.