Do you want to publish a course? Click here

Quenched nematic criticality separating two superconducting domes in an iron-based superconductor under pressure

266   0   0.0 ( 0 )
 Added by Amalia Coldea
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nematic electronic state and its associated nematic critical fluctuations have emerged as potential candidates for superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with other magnetically-ordered phases poses significant challenges in establishing their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe$_{0.89}$S$_{0.11}$, we provide a unique access to a clean nematic quantum phase transition in the absence of a long-range magnetic order. We find that in the proximity of the nematic phase transition, there is an unusual non-Fermi liquid behavior in resistivity at high temperatures that evolves into a Fermi liquid behaviour at the lowest temperatures. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure. We detect experimentally a Lifshitz transition that separates two distinct superconducting regions: one emerging from the nematic electronic phase with a small Fermi surface and strong electronic correlations and the other one with a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically-ordered phase at high pressures. The lack of mass divergence suggests that the nematic critical fluctuations are quenched by the strong coupling to the lattice. This establishes that superconductivity is not enhanced at the nematic quantum phase transition in the absence of magnetic order.



rate research

Read More

151 - J. Zhang , F. L. Liu , T. P. Ying 2016
As the simplest iron-based superconductor, FeSe forms a tetragonal structure with transition temperature Tc ~ 8 K. With assistance of pressure, or other techniques, Tc can be greatly enhanced, even to above liquid nitrogen temperature. The newly discovered superconducting tetragonal FeS (Tc ~ 4.5 K), a sulfide counterpart of FeSe, promotes us on its high pressure investigation. The transport and structure evolution of FeS with pressure have been studied. A rapid suppression of Tc and vanishing of superconductivity at 4.0 GPa are observed, followed by a second superconducting dome with a 30% enhancement in maximum Tc. An onsite tetragonal to hexagonal phase transition occurs around 7.0 GPa, followed by a broad pressure range of phase coexistence. The residual deformed tetragonal phase is considered as the source of second superconducting dome. The observation of two superconducting domes in iron-based superconductors poses great challenges for understanding their pairing mechanism.
103 - C. C. Zhao , L. S. Wang , W. Xia 2021
Recently superconductivity was discovered in the Kagome metal AV3Sb5 (A = K, Rb, and Cs), which has an ideal Kagome lattice of vanadium. These V-based superconductors also host charge density wave (CDW) and topological nontrivial band structure. Here we report the ultralow-temperature thermal conductivity and high pressure resistance measurements on CsV3Sb5 with Tc = 2.5 K, the highest among AV3Sb5. A finite residual linear term of thermal conductivity at zero magnetic field and its rapid increase in fields suggest nodal superconductivity. By applying pressure, the Tc of CsV3Sb5 increases first, then decreases to lower than 0.3 K at 11.4 GPa, showing a clear first superconducting dome peaked around 0.8 GPa. Above 11.4 GPa, superconductivity re-emerges, suggesting a second superconducting dome. Both nodal superconductivity and superconducting domes point to unconventional superconductivity in this V-based superconductor. While our finding of nodal superconductivity puts a strong constrain on the pairing state of the first dome, which should be related to the CDW instability, the superconductivity of the second dome may present another exotic pairing state in this ideal Kagome lattice of vanadium.
We use inelastic neutron scattering to study the low-energy spin excitations of 112-type iron pnictide Ca$_{0.82}$La$_{0.18}$Fe$_{0.96}$Ni$_{0.04}$As$_{2}$ with bulk superconductivity below $T_c=22$ K. A two-dimensional spin resonance mode is found around $E=$ 11 meV, where the resonance energy is almost temperature independent and linearly scales with $T_c$ along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any $L$ modulations. Due to the unique monoclinic structure with additional zigzag arsenic chains, the As $4p$ orbitals contribute to a three-dimensional hole pocket around $Gamma$ point and an extra electron pocket at $X$ point. Our results suggest that the energy and momentum distribution of spin resonance does not directly response to the $k_z$ dependence of fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.
132 - Jong Mok Ok , S.-H. Baek , C. Hoch 2017
A subtle balance between competing interactions in strongly correlated systems can be easily tipped by additional interfacial interactions in a heterostructure. This often induces exotic phases with unprecedented properties, as recently exemplified by high-Tc superconductivity in FeSe monolayer on the nonmagnetic SrTiO3. When the proximity-coupled layer is magnetically active, even richer phase diagrams are expected in iron-based superconductors (FeSCs), which however has not been explored due to the lack of a proper material system. One promising candidate is Sr2VO3FeAs, a naturally-assembled heterostructure of a FeSC and a Mott-insulating vanadium oxide. Here, using high-quality single crystals and high-accuracy 75As and 51V nuclear magnetic resonance (NMR) measurements, we show that a novel electronic phase is emerging in the FeAs layer below T0 ~ 155 K without either static magnetism or a crystal symmetry change, which has never been observed in other FeSCs. We find that frustration of the otherwise dominant Fe stripe and V Neel fluctuations via interfacial coupling induces a charge/orbital order with C4-symmetry in the FeAs layers, while suppressing the Neel antiferromagnetism in the SrVO3 layers. These findings demonstrate that the magnetic proximity coupling is effective to stabilize a hidden order in FeSCs and, more generally, in strongly correlated heterostructures.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا