On ancient periodic solutions to Axially-Symmetric Navier-Stokes Equations


Abstract in English

An old problem asks whether bounded mild ancient solutions of the 3 dimensional Navier-Stokes equations are constants. While the full 3 dimensional problem seems out of reach, in the works cite{KNSS, SS09}, the authors expressed their belief that the following conjecture should be true. For incompressible axially-symmetric Navier-Stokes equations (ASNS) in three dimensions: textit{bounded mild ancient solutions are constant}. Understanding of such solutions could play useful roles in the study of global regularity of solutions to the ASNS. In this article, we essentially prove this conjecture in the special case that $u$ is periodic in $z$. To the best of our knowledge, this seems to be the first result on this conjecture without unverified decay condition. It also shows that periodic solutions are not models of possible singularity or high velocity region. Some partial result in the non-periodic case is also given.

Download