Margulis lemma and Hurewicz fibration Theorem on Alexandrov spaces


Abstract in English

We prove the generalized Margulis lemma with a uniform index bound on an Alexandrov $n$-space $X$ with curvature bounded below, i.e., small loops at $pin X$ generate a subgroup of the fundamental group of unit ball $B_1(p)$ that contains a nilpotent subgroup of index $le w(n)$, where $w(n)$ is a constant depending only on the dimension $n$. The proof is based on the main ideas of V.~Kapovitch, A.~Petrunin, and W.~Tuschmann, and the following results: (1) We prove that any regular almost Lipschitz submersion constructed by Yamaguchi on a collapsed Alexandrov space with curvature bounded below is a Hurewicz fibration. We also prove that such fibration is uniquely determined up to a homotopy equivalence. (2) We give a detailed proof on the gradient push, improving the universal pushing time bound given by V.~Kapovitch, A.~Petrunin, and W.~Tuschmann, and justifying in a specific way that the gradient push between regular points can always keep away from extremal subsets.

Download