Do you want to publish a course? Click here

A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: The data

108   0   0.0 ( 0 )
 Added by Shuro Takano
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observational data of a molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at the wavelengths of 3 mm ($sim$85--116 GHz) obtained with the Nobeyama 45 m radio telescope. In IC 342 the line survey with high spectral resolution at the 3 mm region was reported for the first time. NGC 1068 is a nearby gas-rich galaxy with X-rays from an active galactic nucleus (AGN), and NGC 253 and IC 342 are nearby gas-rich galaxies with prototypical starbursts. These galaxies are useful to study the impacts of X-rays and ultraviolet radiation on molecular abundances. The survey was carried out with the resulting rms noise level of a few mK ($Trm{_A^*}$). As a result we could obtain almost complete data of these galaxies at the 3 mm region: We detected 19--23 molecular species depending on the galaxies including several new detections (e.g., cyclic-C$_3$H$_2$ in IC 342). We found that the intensities of HCN, CN, and HC$_3$N relative to $^{13}$CO are significantly strong in NGC 1068 compared to those in NGC 253 and IC 342. On the other hand, CH$_3$CCH was not detected in NGC 1068. We obtained these results with the narrow beam (15$$.2--19$$.1) of the 45 m telescope among the single-dish telescopes, and in particular selectively observed the molecular gas close to the circumnuclear disk (CND) in NGC 1068. Our line intensities in NGC 1068 were compared to those obtained with the IRAM 30 m radio telescope already reported. As a result, the intensity ratio of each line was found to have information on the spatial distribution. Our observations obtained the line intensities and stringent constraints on the upper limit for the three galaxies with such narrow beam, and consequently, the data will be a basis for further observations with high spatial resolution.



rate research

Read More

It is important to investigate the relationships between the power sources and the chemical compositions of galaxies for understanding the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards AGN host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45-m telescope in the 3-mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ~15--19, which is able to spatially separate the nuclear molecular emission from that of the starburst ring (d~30) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends on the abundances of molecules surrounding the AGN on 1 kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high energy radiation or less sublimation of a precursor of CH3CCH from grains.
We conduct spectral line survey observations in the 3 mm band toward a spiral arm, a bar-end, and a nuclear region of the nearby barred spiral galaxy NGC 3627 with the IRAM 30 m telescope and the Nobeyama 45 m telescope. Additional observations are performed toward the spiral arm and the bar-end in the 2 mm band. We detect 8, 11, and 9 molecular species in the spiral arm, the bar-end, and the nuclear region, respectively. Star-formation activities are different among the three regions, and in particular, the nucleus of NGC 3627 is known as a LINER/Seyfert 2 type nucleus. In spite of these physical differences, the chemical composition shows impressive similarities among the three regions. This result means that the characteristic chemical composition associated with these regions is insensitive to the local physical conditions such as star formation rate, because such local effects are smeared out by extended quiescent molecular gas on scales of 1 kpc. Moreover, the observed chemical compositions are also found to be similar to those of molecular clouds in our Galaxy and the spiral arm of M51, whose elemental abundances are close to those in NGC 3627. Therefore, this study provides us with a standard template of the chemical composition of extended molecular clouds with the solar metalicity in nearby galaxies.
Spectral line survey observations are conducted toward the high-mass protostar candidate NGC 2264 CMM3 in the 4 mm, 3 mm, and 0.8 mm bands with the Nobeyama 45 m telescope and the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. In total, 265 emission lines are detected in the 4 mm and 3 mm bands, and 74 emission lines in the 0.8 mm band. As a result, 36 molecular species and 30 isotopologues are identified. In addition to the fundamental molecular species, many emission lines of carbon-chain molecules such as HC5N, C4H, CCS, and C3S are detected in the 4 mm and 3 mm bands. Deuterated molecular species are also detected with relatively strong intensities. On the other hand, emission lines of complex organic molecules such as HCOOCH3, and CH3OCH3 are found to be weak. For the molecules for which multiple transitions are detected, rotation temperatures are derived to be 7-33 K except for CH3OH. Emission lines with high upper-state energies (Eu > 150 K) are detected for CH3OH, indicating existence of a hot core. In comparison with the chemical composition of the Orion KL, carbon-chain molecules and deuterated molecules are found to be abundant in NGC 2264 CMM3, while sulfur-bearing species and complex organic molecules are deficient. These characteristics indicate chemical youth of NGC 2264 CMM3 in spite of its location at the center of the cluster forming core, NGC 2264 C.
151 - Fumitaka Nakamura 2019
We carried out mapping observations toward three nearby molecular clouds, Orion A, Aquila Rift, and M17, using a new 100 GHz receiver, FOREST, on the Nobeyama 45-m telescope. In the present paper, we describe the details of the data obtained such as intensity calibration, data sensitivity, angular resolution, and velocity resolution. Each target contains at least one high-mass star-forming region. The target molecular lines were $^{12}$CO ($J = 1 - 0$), $^{13}$CO ($J = 1 - 0$), C$^{18}$O ($J = 1 - 0$), N$_2$H$^+$ ($J=1-0$), and CCS ($J_N=8_7-7_6$), with which we covered the density range of 10$^2$ cm$^{-3}$ to 10$^6$ cm$^{-3}$ with an angular resolution of $sim 20arcsec$ and a velocity resolution of $sim$ 0.1 km s$^{-1}$. Assuming the representative distances of 414 pc, 436 pc, and 2.1 kpc, the maps of Orion A, Aquila Rift, and M17 cover most of the densest parts with areas of about 7 pc $times$ 15 pc, 7 pc $times$ 7 pc, and 36 pc $times$ 18 pc, respectively. On the basis of the $^{13}$CO column density distribution, the total molecular masses are derived to be $3.86 times 10^4 M_odot$, $2.67 times 10^4 M_odot$, and $8.1times 10^5 M_odot$ for Orion A, Aquila Rift, and M17, respectively. For all the clouds, the H$_2$ column density exceeds the theoretical threshold for high-mass star formation of $gtrsim$ 1 g cm$^{-2}$, only toward the regions which contain current high-mass star-forming sites. For other areas, further mass accretion or dynamical compression would be necessary for future high-mass star formation. This is consistent with the current star formation activity. Using the $^{12}$CO data, we demonstrate that our data have enough capability to identify molecular outflows, and for Aquila Rift, we identify 4 new outflow candidates. The scientific results will be discussed in details in separate papers.
We conducted an exploration of 12CO molecular outflows in the Orion A giant molecular cloud to investigate outflow feedback using 12CO (J = 1-0) and 13CO (J = 1-0) data obtained by the Nobeyama 45-m telescope. In the region excluding the center of OMC 1, we identified 44 12CO (including 17 newly detected) outflows based on the unbiased and systematic procedure of automatically determining the velocity range of the outflows and separating the cloud and outflow components. The optical depth of the 12CO emission in the detected outflows is estimated to be approximately 5. The total momentum and energy of the outflows, corrected for optical depth, are estimated to be 1.6 x 10 2 M km s-1 and 1.5 x 10 46 erg, respectively. The momentum and energy ejection rate of the outflows are estimated to be 36% and 235% of the momentum and energy dissipation rates of the cloud turbulence, respectively. Furthermore, the ejection rates of the outflows are comparable to those of the expanding molecular shells estimated by Feddersen et al. (2018, ApJ, 862, 121). Cloud turbulence cannot be sustained by the outflows and shells unless the energy conversion efficiency is as high as 20%.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا