No Arabic abstract
Active galactic nuclei (AGNs) have been attracting research attention due to their special observable properties. Specifically, a majority of AGNs are detected by Fermi-LAT missions, but not by Fermi-LAT, which raises the question of whether any differences exist between the two. To answer this issue, we compile a sample of 291 superluminal AGNs (189 FDSs and 102 non-FDSs) from available multi-wavelength radio, optical, and X-ray (or even $gamma$-ray) data and Doppler factors and proper motion ($mu$) (or apparent velocity ($beta_{rm{app}}$)); calculated the apparent velocity from their proper motion, Lorentz factor ($Gamma$), viewing angle ($phi$) and co-moving viewing angle ($phi_{co}$) for the sources with available Doppler factor ($delta$); and performed some statistical analyses for both types. Our study indicated that1. In terms of average values, FDSs have higher proper motions ($mu$), apparent velocities ($beta_{rm app}$), Doppler factor ($delta$), Lorentz factor ($Gamma$), and smaller viewing angle ($phi$). Nevertheless, there is no clear difference in co-moving viewing angles ($phi_{rm co}$).
We perform a multi-band statistical analysis of core-dominated superluminal active galactic nuclei (AGN) detected with Fermi Large Area Telescope (LAT). The detection rate of $gamma$-ray jets is found to be high for optically bright AGN. There is a significant correlation between the $gamma$-ray luminosity and the optical nuclear and radio (15 GHz) luminosities of AGN. We report a well defined positive correlation between the $gamma$-ray luminosity and the radio-loudness for quasars and BL Lacertae type objects (BL Lacs). The slope of the best-fit line is significantly different for quasars and BL Lacs. The relations between the optical and radio luminosities and the $gamma$-ray loudness are also examined, showing a different behavior for the populations of quasars and BL Lacs. Statistical results suggest that the $gamma$-ray, optical and radio emission is generated at different locations and velocity regimes along the parsec-scale jet.
Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of these sources allowed significant spectral extraction. They show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars are also visible in the first 16 months of the Fermi/LAT data, thus allowing to constrain the inverse Compton branch in these cases. Among others, we analyse the LAT data of four blazars which were not included in the Fermi LAT Bright AGN Sample based on the first 3 months of the mission: QSO B0836+710, H 1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during bright outbursts, as already observed simultaneously by INTEGRAL and Fermi (e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to several hundred keV. We present the spectral analysis of INTEGRAL and Fermi data and demonstrate the potential of INTEGRAL observations of Fermi detected blazars in outburst by analysing the combined data set of the persistent radio galaxy Cen A.
The bright long gamma-ray burst GRB 141207A was observed by the {it Fermi Gamma-ray Space Telescope} and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirical Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ($alpha$ = +0.2 -- +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock. In the afterglow phase, the temporal and spectral behaviors of the temporally extended high-energy emission and the fading X-ray emission detected by XRT on-board {it Swift} are consistent with synchrotron emission in a radiative external forward shock.
Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the time scale of their radio flares. In this $Letter$, we use multiwavelength data and Doppler factors reported in the literatures for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions, and investigate the correlations among observed and intrinsic data. Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between $gamma$-ray luminosity and the lower energy ones. For flaring blazars detected by Fermi, we conclude that (1) Observed emissions are strongly beamed; (2) The anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) Intrinsic $gamma$-ray luminosity is strongly correlated with other intrinsic luminosities.