Do you want to publish a course? Click here

The Brightest $zgtrsim8$ Galaxies over the COSMOS UltraVISTA Field

73   0   0.0 ( 0 )
 Added by Mauro Stefanon
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 16 new ultrabright $H_{AB}lesssim25$ galaxy candidates at z~8 identified over the COSMOS/UltraVISTA field. The new search takes advantage of the deepest-available ground-based optical and near-infrared observations, including the DR3 release of UltraVISTA and full-depth Spitzer/IRAC observations from the SMUVS and SPLASH programs. Candidates are selected using Lyman-break criteria, combined with strict optical non-detection and SED-fitting criteria, minimizing contamination by low-redshift galaxies and low-mass stars. HST/WFC3 coverage from the DASH program reveals that one source evident in our ground-based near-IR data has significant substructure and may actually correspond to 3 separate z~8 objects, resulting in a sample of 18 galaxies, 10 of which seem to be fairly robust (with a >97% probability of being at z>7). The UV-continuum slope $beta$ for the bright z~8 sample is $beta=-2.2pm0.6$, bluer but still consistent with that of similarly bright galaxies at z~6 ($beta=-1.55pm0.17$) and z~7 ($beta=-1.75pm0.18$). Their typical stellar masses are 10$^{9.1^{+0.5}_{-0.4}}M_{odot}$, with the SFRs of $32^{+44}_{-32}M_{odot}$/year, specific SFR of $4^{+8}_{-4}$ Gyr$^{-1}$, stellar ages of $sim22^{+69}_{-22}$,Myr, and low dust content A$_V=0.15^{+0.30}_{-0.15}$ mag. Using this sample we constrain the bright end of the z~8 UV luminosity function (LF). When combined with recent empty field LF estimates at z~8-9, the resulting z~8 LF can be equally well represented by either a Schechter or a double power-law (DPL) form. Assuming a Schechter parameterization, the best-fit characteristic magnitude is $M^*= -20.95^{+0.30}_{-0.35}$ mag with a very steep faint end slope $alpha=-2.15^{+0.20}_{-0.19}$. These new candidates include amongst the brightest yet found at these redshifts, 0.5-1.0 mag brighter than found over CANDELS, providing excellent targets for follow-up studies.



rate research

Read More

We present an estimation of lifetimes of massive galaxies with distinct UV colors at $0.5 le z le 2.5$ in the COSMOS/UltraVISTA field. After dividing the galaxy sample into subsamples of red sequence (RS), blue cloud (BC), and green valley (GV) galaxies in different redshift bins, according to their rest-frame extinction-corrected UV colors, we derive their lifetimes using clustering analyses. Several essentials that may influence the lifetime estimation have been explored, including the dark matter (DM) halo mass function (HMF), the width of redshift bin, the growth of DM halos within each redshift bin, and the stellar mass. We find that the HMF difference results in scatters of $sim0.2$ dex on lifetime estimation; adopting a redshift bin width of $Delta z = 0.5$ is good enough to estimate the lifetime; and no significant effect on lifetime estimation is found due to the growth of DM halos within each redshift bin. The galaxy subsamples with higher stellar masses generally have shorter lifetimes; however, the lifetimes among different subsamples at z > 1:5 tend to be independent of stellar mass. Consistently, the clustering-based lifetime for each galaxy subsample agrees well with that inferred using the spectral energy distribution modeling. Moreover, the lifetimes of the RS and BC galaxies also coincide well with their typical gas depletion timescales attributed to the consumption of star formation. Interestingly, the distinct lifetime behaviors of the GV galaxies at $z le 1.5$ and $z>1.5$ can not be fully accounted for by their gas depletion timescales. Instead, this discrepancy between the lifetimes and gas depletion timescales of the GV galaxies suggests that there are additional physical processes, such as feedback of active galactic nuclei, accelerating the quenching of GV galaxies at high redshifts.
We report on the discovery of three especially bright candidate $z_{phot} gtrsim 8$ galaxies. Five sources were targeted for follow-up with HST/WFC3, selected from a larger sample of 16 bright ($24.8 lesssim Hlesssim25.5$~mag) candidate $zgtrsim 8$ LBGs identified over the 1.6 degrees$^2$ of the COSMOS/UltraVISTA field. These were identified as Y and J dropouts by leveraging the deep (Y-to-$K_{S} sim 25.3-24.8$~mag, $5sigma$) NIR data from the UltraVISTA DR3 release, deep ground based optical imaging from the CFHTLS and Subaru Suprime Cam programs and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprime Cam g, r, i, z and Y band data, we confirm that 3/5 galaxies have robust $z_{phot}sim8.0-8.7$, consistent with the initial selection. The remaining 2/5 galaxies have a nominal $z_{phot}sim2$. However, if we use the HST data alone, these objects have increased probability of being at $zsim9$. Furthermore, we measure mean UV continuum slopes $beta=-1.91pm0.26$ for the three $zsim8-9$ galaxies, marginally bluer than similarly luminous $zsim4-6$ in CANDELS but consistent with previous measurements of similarly luminous galaxies at $zsim7$. The circularized effective radius for our brightest source is $0.9pm0.2$ kpc, similar to previous measurements for a bright $zsim11$ galaxy and bright $zsim7$ galaxies. Finally, enlarging our sample to include the six brightest $zsim8$ LBGs identified over UltraVISTA (i.e., including three other sources from Labbe et al. 2017, in prep.) we estimate for the first time the volume density of galaxies at the extreme bright ($M_{UV}sim-22$~mag) end of the $zsim8$ UV LF. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double power-law form.
We present an ALMA study of the ~180 brightest sources in the SCUBA-2 map of the COSMOS field from the S2COSMOS survey, as a pilot study for AS2COSMOS - a full survey of the ~1,000 sources in this field. In this pilot we have obtained 870-um continuum maps of an essentially complete sample of the brightest 182 sub-millimetre sources (S_850um=6.2mJy) in COSMOS. Our ALMA maps detect 260 sub-millimetre galaxies (SMGs) spanning a range in flux density of S_870um=0.7-19.2mJy. We detect more than one SMG counterpart in 34+/-2 per cent of sub-millimetre sources, increasing to 53+/-8 per cent for SCUBA-2 sources brighter than S_850um>12mJy. We estimate that approximately one-third of these SMG-SMG pairs are physically associated (with a higher rate for the brighter secondary SMGs, S_870um>3mJy), and illustrate this with the serendipitous detection of bright [CII] 157.74um line emission in two SMGs, AS2COS0001.1 & 0001.2 at z=4.63, associated with the highest significance single-dish source. Using our source catalogue we construct the interferometric 870um number counts at S_870um>6.2mJy. We use the extensive archival data of this field to construct the multiwavelength spectral energy distribution of each AS2COSMOS SMG, and subsequently model this emission with MAGPHYS to estimate their photometric redshifts. We find a median photometric redshift for the S_870um>6.2mJy AS2COSMOS sample of z=2.87+/-0.08, and clear evidence for an increase in the median redshift with 870-um flux density suggesting strong evolution in the bright-end of the 870um luminosity function.
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks_auto>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]<23, Ks_auto>24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=<z<5, accounting for >~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.
We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG+ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05-1.75 and masses of $M_{500,c}=2times10^{13}-10^{15}$ M$_odot$ Specifically, we measure the relationship between the BCG+ICL stellar mass $M_star$ and $M_{500,c}$ at projected radii 10 < r < 100 kpc for three different epochs. At intermediate redshift (z = 0.40), where we have the best data, we find $M_starpropto M_{500,c}^{0.48pm0.06}$. Fixing the exponent of this power law for all redshifts, we constrain the normalization of this relation to be $2.08pm0.21$ times higher at z = 0.40 than at high redshift (z = 1.55). We find no change in the relation from intermediate to low redshift (z = 0.10). In other words, for fixed $M_{500,c}$, $M_star$ at 10 < r < 100 kpc increases from z = 1.55 to z = 0.40 and not significantly thereafter. Theoretical models predict that the physical mass growth of the cluster from z = 1.5 to z = 0 within $r_{500,c}$ is a factor of 1.4, excluding evolution due to definition of $r_{500,c}$. We find that $M_star$ within the central 100 kpc increases by a factor of 3.8 over the same period. Thus, the growth of $M_star$ in this central region is more than a factor of two greater than the physical mass growth of the cluster as a whole. Furthermore, the concentration of the BCG+ICL stellar mass, defined by the ratio of stellar mass within 10 kpc to the total stellar mass within 100 kpc, decreases with increasing $M_{500,c}$ at all redshift. We interpret this result as evidence for inside-out growth of the BCG+ICL over the past ten Gyrs, with stellar mass assembly occuring at larger radii at later times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا