No Arabic abstract
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in terms of a Weyl superalgebra and incorporates inequivalent representations of the bosonic Weyl subalgebra. The new cohomology includes the standard Lie superalgebra cohomology as a special case. Examples of new cohomology groups are computed.
We examine in detail the Jacobi-Trudi characters over the ortho-symplectic Lie superalgebras spo(2|2m+1) and spo(2n|3). We furthermore relate them to Serganovas notion of Euler characters.
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalgebra. We also describe the associative superalgebra structures of the (divided power) cohomology for some low-dimensional filiform Lie superalgebras.
In this paper, all (super)algebras are over a field $mathbb{F}$ of characteristic different from $2, 3$. We construct the so-called 5-sequences of cohomology for central extensions of a Lie superalgebra and prove that they are exact. Then we prove that the multipliers of a Lie superalgebra are isomorphic to the second cohomology group with coefficients in the trivial module for the Lie superalgebra under consideration.
The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplicable new phenomena, of which (a) and (b) concern hyperbolic (almost affine) complex Lie (super)algebras, except for the 5 Lie superalgebras whose Cartan matrices have 0 on the main diagonal: (a) several of the inverses of Cartan matrices have all their elements negative (not just non-positive, as they should be according to an a priori characterization due to Zhang Hechun); (b) the 0s only occur on the main diagonals of the inverses; (c) the determinants of inequivalent Cartan matrices of the simple Lie (super)algebra may differ (in any characteristic). We interpret most of the results of Wei Yangjiang and Zou Yi Ming, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Alg. Appl., 521 (2017) 283--298 as inverses of the Gram matrices of non-degenerate invariant symmetric bilinear forms on the (super)algebras considered, not of Cartan matrices, and give more adequate references. In particular, the inverses of Cartan matrices of simple Lie algebras were already published, starting with Dynkins paper in 1952, see also Table 2 in Springers book by Onishchik and Vinberg (1990).