Do you want to publish a course? Click here

X-ray binaries as the origin of nebular HeII emission in low-metallicity star-forming galaxies

188   0   0.0 ( 0 )
 Added by Daniel Schaerer
 Publication date 2019
  fields Physics
and research's language is English
 Authors D. Schaerer




Ask ChatGPT about the research

The origin of nebular HeII emission, which is frequently observed in low-metallicity (O/H) star-forming galaxies, remains largely an unsolved question. Using the observed anticorrelation of the integrated X-ray luminosity per unit of star formation rate ($L_X/{rm SFR}$) of an X-ray binary population with metallicity and other empirical data from the well-studied galaxy I Zw 18, we show that the observed HeII 4686 intensity and its trend with metallicity is naturally reproduced if the bulk of He$^+$ ionizing photons are emitted by the X-ray sources. We also show that a combination of X-ray binary population models with normal single and/or binary stellar models reproduces the observed $I(4686)/I(Hbeta)$ intensities and its dependency on metallicity and age. We conclude that both empirical data and theoretical models suggest that high-mass X-ray binaries are the main source of nebular HeII emission in low-metallicity star-forming galaxies.



rate research

Read More

324 - S. Mineo 2011
Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation with the star formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star formation activity in the host galaxy and their collective luminosity and number scale with the SFR, in particular, Lx~2.6 10^{39} SFR. However, the scaling relations still bear a rather large dispersion of ~0.4 dex, which we believe is of a physical origin. We present the catalog of 1057 X-ray sources detected within the $D25$ ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with slope of 1.6 in the logLx~35-40 luminosity range with a moderately significant evidence for a break or cut-off at Lx~10^{40} erg/s. As before, we did not find any features at the Eddington limit for a neutron star or a stellar mass black hole. We discuss implications of our results for the theory of binary evolution. In particular we estimate the fraction of compact objects that once upon their lifetime experienced an X-ray active phase powered by accretion from a high mass companion and obtain a rather large number, fx~0.2 (0.1 Myr/tau_x) (tau_x is the life time of the X-ray active phase). This is ~4 orders of magnitude more frequent than in LMXBs. We also derive constrains on the mass distribution of the secondary star in HMXBs.
We study the diffuse X-ray luminosity ($L_X$) of star forming galaxies using 2-D axisymmetric hydrodynamical simulations and analytical considerations of supernovae (SNe) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of $L_X$ with star formation rate (SFR) as $L_X propto$ SFR$^2$ for SFR $gtrsim 1$ M$_odot$yr$^{-1}$, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the sub-linear behaviour of the $L_X-$SFR relation as well as a large scatter in the diffuse X-ray emission for low SFRs ($lesssim$ few M$_odot$yr$^{-1}$). Our results point out that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for detection of the elusive CGM.
The shape of the ionising spectra of galaxies is a key ingredient to reveal their physical properties and to our understanding of the ionising background radiation. A long-standing unsolved problem is the presence of HeII nebular emission in many low-metallicity star-forming galaxies. This emission requires ionising photons with energy >54 eV, which are not produced in sufficient amounts by normal stellar populations. To examine if high mass X-ray binaries and ultra-luminous X-ray sources (HMXB/ULX) can explain the observed HeII nebular emission and how their presence alters other emission lines, we compute photoionisation models of galaxies including such sources. We combine spectral energy distributions (SEDs) of integrated stellar populations with constrained SEDs of ULXs to obtain composite spectra with varying amounts of X-ray luminosity, parameterised by Lx/SFR. With these we compute photoionisation models to predict the emission line fluxes of the optical recombination lines of H and He+, and the main metal lines of OIII, OII, OI, and NII. The predictions are then compared to a large sample of low-metallicity galaxies. We find that it is possible to reproduce the nebular HeII and other line observations with our spectra and with amounts of Lx/SFR compatible with the observations. Our work suggests that HMBX/ULX could be responsible for the observed nebular HeII emission. However, the strengths of the high and low ionisation lines, such as HeII and OI, depend strongly on the X-ray contribution and on the assumed SEDs of the high energy source(s); the latter are poorly known.
Nebular HeII emission implies the presence of energetic photons (E$ge$54 eV). Despite the great deal of effort dedicated to understanding HeII ionization, its origin has remained mysterious, particularly in metal-deficient star-forming (SF) galaxies. Unfolding HeII-emitting, metal-poor starbursts at z ~ 0 can yield insight into the powerful ionization processes occurring in the primordial universe. Here we present a new study on the effects that X-ray sources have on the HeII ionization in the extremely metal-poor galaxy IZw18 (Z ~ 3 % Zsolar), whose X-ray emission is dominated by a single high-mass X-ray binary (HMXB). This study uses optical integral field spectroscopy, archival Hubble Space Telescope observations, and all of the X-ray data sets publicly available for IZw18. We investigate the time-variability of the IZw18 HMXB for the first time; its emission shows small variations on timescales from days to decades. The best-fit models for the HMXB X-ray spectra cannot reproduce the observed HeII ionization budget of IZw18, nor can recent photoionization models that combine the spectra of both very low metallicity massive stars and the emission from HMXB. We also find that the IZw18 HMXB and the HeII-emission peak are spatially displaced at a projected distance of $simeq$ 200 pc. These results reduce the relevance of X-ray photons as the dominant HeII ionizing mode in IZw18, which leaves uncertain what process is responsible for the bulk of its HeII ionization. This is in line with recent work discarding X-ray binaries as the main source responsible for HeII ionization in SF galaxies.
The high mass X-ray binaries (HMXBs) provide an exciting framework to investigate the evolution of massive stars and the processes behind binary evolution. HMXBs have shown to be good tracers of recent star formation in galaxies and might be important feedback sources at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational wave sources (BH--BH or BH--NS binaries that may merge producing gravitational waves). In this work, we investigate the nature and properties of HMXB population in star-forming galaxies. We combine the results from the population synthesis model MOBSE (Giacobbo et al. 2018) together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this method describes the HMXBs within their host galaxies in a self-consistent way. We compute the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this methodology matches the main features of the observed XLF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا