Acoustic scene classification using multi-layer temporal pooling based on convolutional neural network


Abstract in English

The performance of an Acoustic Scene Classification (ASC) system is highly depending on the latent temporal dynamics of the audio signal. In this paper, we proposed a multiple layers temporal pooling method using CNN feature sequence as in-put, which can effectively capture the temporal dynamics for an entire audio signal with arbitrary duration by building direct connections between the sequence and its time indexes. We applied our novel framework on DCASE 2018 task 1, ASC. For evaluation, we trained a Support Vector Machine (SVM) with the proposed Multi-Layered Temporal Pooling (MLTP) learned features. Experimental results on the development dataset, usage of the MLTP features significantly improved the ASC performance. The best performance with 75.28% accuracy was achieved by using the optimal setting found in our experiments.

Download