Do you want to publish a course? Click here

Fermi surface enlargement on the Kondo lattice

119   0   0.0 ( 0 )
 Added by Eoin Quinn Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kondo lattice model is a paradigmatic model for the description of local moment systems, a class of materials exhibiting a range of strongly correlated phenomena including heavy fermion formation, magnetism, quantum criticality and unconventional superconductivity. Conventional theoretical approaches invoke fractionalization of the local moment spin through large-N and slave particle methods. In this work we develop a new formalism, based instead on non-canonical degrees of freedom. We demonstrate that the graded Lie algebra su(2|2) provides a powerful means of organizing correlations on the Kondo lattice through a splitting of the electronic degree of freedom, in a manner which entwines the conduction electrons with the local moment spins. This offers a novel perspective on heavy fermion formation. Unlike slave-particle methods, non-canonical degrees of freedom generically allow for a violation of the Luttinger sum rule, and we interpret recent angle resolved photoemission experiments on Ce-115 systems in view of this.

rate research

Read More

142 - Nicola Lanata` , Paolo Barone , 2008
We derive, by means of an extended Gutzwiller wavefunction and within the Gutzwiller approximation, the phase diagram of the Kondo lattice model. We find that generically, namely in the absence of nesting, the model displays an $f$-electron Mott localization accompanied by a discontinuous change of the conduction electron Fermi surface as well as by magnetism. When the non interacting Fermi surface is close to nesting, the Mott localization disentangles from the onset of magnetism. First the paramagnetic heavy fermion metal turns continuously into an itinerant magnet - the Fermi surface evolves smoothly across the transition - and afterwards Mott localization intervenes with a discontinuous rearrangement of the Fermi surface. We find that the $f$-electron localization remains even if magnetism is prevented, and is still accompanied by a sharp transfer of spectral weigth at the Fermi energy within the Brillouin zone. We further show that the Mott localization can be also induced by an external magnetic field, in which case it occurs concomitantly with a metamagnetic transition.
One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superconductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].
87 - Peng Li , Zhongzheng Wu , Fan Wu 2019
Using angle-resolved photoemission spectroscopy (ARPES) and resonant ARPES, we report evidence of strong anisotropic conduction-f electron mixing (c-f mixing) in CeBi by observing a largely expanded Ce-5d pocket at low temperature, with no change in the Bi-6p bands. The Fermi surface (FS) expansion is accompanied by a pronounced spectral weight transfer from the local 4f 0 peak of Ce (corresponding to Ce3+) to the itinerant conduction bands near the Fermi level. Careful analysis suggests that the observed large FS change (with a volume expansion of the electron pocket up to 40%) can most naturally be explained by a small valence change (~ 1%) of Ce, which coexists with a very weak Kondo screening. Our work therefore provides evidence for a FS change driven by real charge fluctuations deep in the Kondo limit, which is made possible by the low carrier density.
We numerically solve the Hubbard model on the Bethe lattice with finite coordination number $z=3$, and determine its zero-temperature phase diagram. For this purpose, we introduce and develop the `variational uniform tree state (VUTS) algorithm, a tensor network algorithm which generalizes the variational uniform matrix product state algorithm to tree tensor networks. Our results reveal an antiferromagnetic insulating phase and a paramagnetic metallic phase, separated by a first-order doping-driven metal-insulator transition. We show that the metallic state is a Fermi liquid with coherent quasiparticle excitations for all values of the interaction strength $U$, and we obtain the finite quasiparticle weight $Z$ from the single-particle occupation function of a generalized momentum variable. We find that $Z$ decreases with increasing $U$, ultimately saturating to a non-zero, doping-dependent value. Our work demonstrates that tensor-network calculations on tree lattices, and the VUTS algorithm in particular, are a platform for obtaining controlled results for phenomena absent in one dimension, such as Fermi liquids, while avoiding computational difficulties associated with tensor networks in two dimensions. We envision that future studies could observe non-Fermi liquids, interaction-driven metal-insulator transitions, and doped spin liquids using this platform.
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low energy excitations. Here we reveal another route to experimentally realise a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB$_6$ positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures ($ll 1$ K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB$_6$, a Fermi surface arises from novel itinerant low energy excitations that couple to magnetic fields, but not weak DC electric fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا