No Arabic abstract
Gamma-ray bursts (GRBs) are a potential tool to probe high-redshift universe. However, the circularity problem enforces people to find model-independent methods to study the luminosity correlations of GRBs. Here, we present a new method which uses gravitational waves as standard sirens to calibrate GRB luminosity correlations. For the third-generation ground-based GW detectors (i.e., Einstein Telescope), the redshifts of gravitational wave (GW) events accompanied electromagnetic counterparts can reach out to $sim 4$, which is more distant than type Ia supernovae ($zlesssim 2$). The Amati relation and Ghirlanda relation are calibrated using mock GW catalogue from Einstein Telescope. We find that the $1sigma$ uncertainty of intercepts and slopes of these correlations can be constrained to less than 0.2% and 8% respectively. Using calibrated correlations, the evolution of dark energy equation of state can be tightly measured, which is important for discriminating dark energy models.
In this paper, we study the luminosity function and formation rate of short gamma-ray bursts (sGRBs). Firstly, we derive the $E_p-L_p$ correlation using 16 sGRBs with redshift measurements and determine the pseudo redshifts of 284 Fermi sGRBs. Then, we use the Lynden-Bell c$^-$ method to study the luminosity function and formation rate of sGRBs without any assumptions. A strong evolution of luminosity $L(z)propto (1+z)^{4.47}$ is found. After removing this evolution, the luminosity function is $ Psi (L) propto L_0 ^ {- 0.29 pm 0.01} $ for dim sGRBs and $ psi (L) propto L_0 ^ {- 1.07 pm 0.01} $ for bright sGRBs, with the break point $8.26 times 10^{50} $ erg s$^{-1}$. We also find that the formation rate decreases rapidly at $z<1.0$, which is different with previous works. The local formation rate of sGRBs is 7.53 events Gpc$^{-3}$ yr$^{-1}$. Considering the beaming effect, the local formation rate of sGRBs including off-axis sGRBs is $ 203.31^{+1152.09}_{-135.54} $ events Gpc$^{-3}$ yr$^{-1}$. We also estimate that the event rate of sGRBs detected by the advanced LIGO and Virgo is $0.85^{+4.82}_{-0.56} $ events yr$^{-1}$ for NS-NS binary.
As is well known, gravitational wave detections of coalescing binaries are standard sirens, allowing a measurement of source distance by gravitational wave means alone. In this paper we explore the analogue of this for continuous gravitational wave emission from individual spinning neutron stars, whose spin-down is driven purely by gravitational wave emission. We show that in this case, the distance measurement is always degenerate with one other parameter, which can be taken to be the moment of inertia of the star. We quantify the accuracy to which such degenerate measurements can be made. We also discuss the practical application of this to scenarios where one or other of distance or moment of inertia is constrained, breaking this degeneracy and allowing a measurement of the remaining parameter. Our results will be of use following the eventual detection of a neutron star spinning down through such gravitational wave emission.
There exists an inevitable scatter in intrinsic luminosity of Gamma Ray Bursts(GRBs). If there is relativistic beaming in the source, viewing angle variation necessarily introduces variation in the intrinsic luminosity function(ILF). Scatter in the ILF can cause a selection bias where distant sources that are detected have a larger median luminosity than those detected close by. Median luminosity, as we know, divides any given population into equal halves. When the functional form of a distribution is unknown, it can be a more robust diagnostic than any that use trial functional forms. In this work we employ a statistical test based on median luminosity and apply it to test a class of models for GRBs. We assume that the GRB jet has a finite opening angle and that the orientation of the GRB jet is random relative to the observer. We parameterize the jet with constant Lorentz factor $Gamma$ and opening angle $theta_0$. We calculate $L_{median}$ as a function of redshift with an average of 17 grbs in each redshift bin($dz=0.01$) empirically, theoretically and use Fermi GBM data, noting that SWIFT data is problematic as it is biased, specially at high redshifts. We find that $L_{median}$ is close to $L_{max}$ for sufficiently extended GRB jet and does not fit the data. We find an acceptable fit with the data when $Gamma$ is between $100$ and $200$, $theta_0leq 0.1$, provided that the jet material along the line of sight to the on axis observer is optically thick, such that the shielded maximum luminosity is well below the bare $L_{max}$. If we associate an on-axis observer with a classically projected monotonically decreasing afterglow, we find that their ILF is similar to those of off-jet observer which we associate with flat phase afterglows.
We study the gravitational wave (GW) production induced by the asymmetric jets of gamma-ray bursts (GRBs). The asymmetric jets result in a recoil force acted on the central compact object, whose motion leads to emission of GW. Under reasonable assumptions and simplifications, we derive the analytic form of the produce GWs. The amplitude of emitted GWs is estimated to be relatively low, but possibility exists that they can be detected by future experiments such as the Einstein Telescope. We find the dynamical properties of the central object, which is difficult to be studied via the electromagnetic (EW) channel, can be inferred by measuring the emitted GWs. Moreover, we find the emitted GWs can be used determine whether the relativistic jets is launched by the neutrino annihilation process or the Blandford-Znajek process, which cannot be clearly distinguished by the current GRB observations. Our work manifests the importance of the GW channel in multi-messenger astronomy. The physical information encoded in the GW and EW emissions of an astrophysical object is complementary to each other; in case some physics can not be effectively investigated using the EW channel alone, including the GW channel can be very helpful.
We investigate prolonged engine activities of short gamma-ray bursts (SGRBs), such as extended and/or plateau emissions, as high-energy gamma-ray counterparts to gravitational waves (GWs). Binary neutron-star mergers lead to relativistic jets and merger ejecta with $r$-process nucleosynthesis, which are observed as SGRBs and kilonovae/macronovae, respectively. Long-term relativistic jets may be launched by the merger remnant as hinted in X-ray light curves of some SGRBs. The prolonged jets may dissipate their kinetic energy within the radius of the cocoon formed by the jet-ejecta interaction. Then the cocoon supplies seed photons to non-thermal electrons accelerated at the dissipation region, causing high-energy gamma-ray production through the inverse Compton scattering process. We numerically calculate high-energy gamma-ray spectra in such a system using a one-zone and steady-state approximation, and show that GeV--TeV gamma-rays are produced with a duration of $10^2-10^5$ seconds. They can be detected by {it Fermi}/LAT or CTA as gamma-ray counterparts to GWs.