No Arabic abstract
Visible light communication (VLC) is an emerging technology that enables broadband data rates using the visible spectrum. In this paper, considering slow beam steering where VLC beam directions are assumed to be fixed during a transmission frame, we find the steering angles that simultaneously serve multiple users within the frame duration and maximize the data rates. This is achieved by solving a non-convex optimization problem using a grid-based search and majorization-minimization (MM) procedure. Subsequently, we consider multiple steerable beams with a larger number of users in the network and propose an algorithm to cluster users and serve each cluster with a separate beam. We optimize the transmit power of each beam to maximize the data rates. Finally, we propose a non-orthogonal multiple access (NOMA) scheme for the beam steering and user clustering scenario, to further increase the data rates of the users. The simulation results show that the proposed beam steering method can efficiently serve a high number of users, and with power optimization, a data rate gain up to ten times is possible. The simulation results for NOMA suggests an additional 10 Mbps sum rate gain for each NOMA user pair.
Large antenna arrays and high-frequency bands are two key features of future wireless communication systems. The combination of large-scale antennas with high transmission frequencies often results in the communicating devices operating in the near-field (Fresnel) region. In this paper, we study the potential of beam focusing, feasible in near-field operation, in facilitating high-rate multi-user downlink multiple-input multiple-output (MIMO) systems. As the ability to achieve beam focusing is dictated by the transmit antenna, we study near-field signaling considering different antenna structures, including fully-digital architectures, hybrid phase shifter-based precoders, and the emerging dynamic metasurface antenna (DMA) architecture for massive MIMO arrays. We first provide a mathematical model to characterize near-field wireless channels as well as the transmission pattern for the considered antenna architectures. Then, we formulate the beam focusing problem for the goal of maximizing the achievable sum-rate in multi-user networks. We propose efficient solutions based on the sum-rate maximization task for fully-digital, (phase shifters based-) hybrid and DMA architectures. Simulation results show the feasibility of the proposed beam focusing scheme for both single- and multi-user scenarios. In particular, the designed focused beams are such that users residing at the same angular direction can communicate reliably without interfering with each other, which is not achievable using conventional far-field beam steering.
Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, we investigate the indoor positioning accuracy of optical based OFDM techniques used in VLC systems. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those of single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart.
This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device equipped with a photo-diode. By casting the LED signal separation problem into an equivalent compressed sensing framework, the user device is able to detect the set of nearby LEDs using sparse signal recovery algorithms. From this set, and using proximity method, position estimation is proposed based on the concept that if signal separation is possible, then overlapping light beam regions lead to decrease in positioning error due to increase in the number of reference points. The proposed method is evaluated in a LED-illuminated large-scale indoor open-plan office space scenario. The positioning accuracy is compared against the positioning error lower bound of the proximity method, for various system parameters.
Indoor positioning systems using visible light communication (VLC) have potential applications in smart buildings, for instance, in developing economical, easy-to-use, widely accessible positioning system based on light-emitting diodes. Thus using VLCs, we introduce a new fuzzy-based system for indoor localization in this paper. The system processes data from transmitters (i.e., anchor nodes) and delivers the calculated position of a receiver. A particle swarm optimization (PSO) technique is then employed to obtain the optimal configuration of the proposed fuzzy logic controllers (FLCs). Specifically, the proposed PSO technique optimizes the membership functions of the FLCs by adjusting their range to achieve the best results regarding the localization reliability. We demonstrate the utility of the proposed approach using experiments.
Channel capacity bounds are derived for a point-to-point indoor visible light communications (VLC) system with signal-dependent Gaussian noise. Considering both illumination and communication, the non-negative input of VLC is constrained by peak and average optical intensity constraints. Two scenarios are taken into account: one scenario has both average and peak optical intensity constraints, and the other scenario has only average optical intensity constraint. For both two scenarios, we derive closed-from expressions of capacity lower and upper bounds. Specifically, the capacity lower bound is derived by using the variational method and the property that the output entropy is invariably larger than the input entropy. The capacity upper bound is obtained by utilizing the dual expression of capacity and the principle of capacity-achieving source distributions that escape to infinity. Moreover, the asymptotic analysis shows that the asymptotic performance gap between the capacity lower and upper bounds approaches zero. Finally, all derived capacity bounds are confirmed using numerical results.