Estimating Approximate Incentive Compatibility


Abstract in English

In practice, most mechanisms for selling, buying, matching, voting, and so on are not incentive compatible. We present techniques for estimating how far a mechanism is from incentive compatible. Given samples from the agents type distribution, we show how to estimate the extent to which an agent can improve his utility by misreporting his type. We do so by first measuring the maximum utility an agent can gain by misreporting his type on average over the samples, assuming his true and reported types are from a finite subset---which our technique constructs---of the type space. The challenge is that by measuring utility gains over a finite subset of the type space, we might miss type pairs $theta$ and $hat{theta}$ where an agent with type $theta$ can greatly improve his utility by reporting type $hat{theta}$. Indeed, our primary technical contribution is proving that the maximum utility gain over this finite subset nearly matches the maximum utility gain overall, despite the volatility of the utility functions we study. We apply our tools to the single-item and combinatorial first-price auctions, generalized second-price auction, discriminatory auction, uniform-price auction, and second-price auction with spiteful bidders.

Download