Do you want to publish a course? Click here

Structural and electronic phase transitions driven by electric field in metastable MoS$_2$ thin flake

200   0   0.0 ( 0 )
 Added by X. H. Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition-metal-dichalcogenides own a variety of structures as well as electronic properties which can be modulated by structural variations, element substitutions, ion or molecule intercalations, etc. However, there is very limited knowledge on metastable phases of this family, especially the precise regulation of structural changes and accompanied evolution of electronic properties. Here, based on a new developed field-effect transistor with solid ion conductor as the gate dielectric, we report a controllable structural and electronic phase transitions in metastable MoS$_2$ thin flakes driven by electric field. We found that the metastable structure of 1T$^{}$-MoS$_2$ thin flake can be transformed into another metastable structure of 1T$^{}$ -type upon intercalation of lithium regulated by electric field. Moreover, the metastable 1T$^{}$ phase persists during the cycle of intercalation and de-intercalation of lithium controlled by electric field, and the electronic properties can be reversibly manipulated with a remarkable change of resistance by four orders of magnitude from the insulating 1T$^{}$-LiMoS$_2$ to superconducting 1T$^{}$-MoS$_2$. Such reversible and dramatic changes in electronic properties provide intriguing opportunities for development of novel nano-devices with highly tunable characteristics under electric field.



rate research

Read More

119 - C. Shang , Y. Q. Fang , Q. Zhang 2018
Transition-metal dichalcogenides open novel opportunities for the exploration of exciting new physics and devices. As a representative system, 2H-MoS$_2$ has been extensively investigated owing to its unique band structure with a large band gap, degenerate valleys and non-zero Berry curvature. However, experimental studies of metastable 1T polytypes have been a challenge for a long time, and electronic properties are obscure due to the inaccessibility of single phase without the coexistence of 1T, 1T and 1T lattice structures, which hinder the broad applications of MoS$_2$ in future nanodevices and optoelectronic devices. Using ${K_x(H_2O)_yMoS_2}$ as the precursor, we have successfully obtained high-quality layered crystals of the metastable 1T-MoS$_2$ with $sqrt{3}atimessqrt{3}a$ superstructure and metastable 1T-MoS$_2$ with a$times$2a superstructure, as evidenced by structural characterizations through scanning tunneling microscopy, Raman spectroscopy and X-ray diffraction. It is found that the metastable 1T-MoS$_2$ is a superconductor with onset transition temperature (${T_c}$) of 4.2 K, while the metastable 1 T-MoS$_2$ shows either superconductivity with Tc of 5.3 K or insulating behavior, which strongly depends on the synthesis procedure. Both of the metastable polytypes of MoS$_2$ crystals can be transformed to the stable 2H phase with mild annealing at about 70 $^{circ}$C in He atmosphere. These findings provide pivotal information on the atomic configurations and physical properties of 1T polytypes of MoS$_2$.
109 - V. Zinth , V. Petricek , M. Dusek 2011
SrRh2As2 exhibits structural phase transitions reminiscent to those of BaFe2As2, but crystallizes with three polymorphs derived from the tetragonal ThCr2Si2-type structure. The structure of alpha-SrRh2As2 is monoclinic with a = 421.2(1) pm, b = 1105.6(2) pm, c = 843.0(1) pm and beta = 95{deg} and was refined as a partially pseudo meroedric twin in the space group P21/c with R1 = 0.0928. beta-SrRh2As2 crystallizes with a modulated structure in the (3+1) dimensional superspace group Fmmm(10gamma)sigma 00 with the unit cell parameters a = 1114.4(3) pm, b = 574.4(2) pm and c = 611.5(2) pm and an incommensurable modulation vector q = (1, 0, 0.3311(4)). High temperature single crystal diffraction experiments confirm the tetragonal ThCr2Si2-type structure for gamma-SrRh2As2 above 350{deg}C. Electronic band structure calculations indicate that the structural distortion in alpha-SrRh2As2 is caused by strong Rh-Rh bonding interactions and has no magnetic origin as suggested for isotypic BaFe2As2.
Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The atomic thickness of two-dimensional (2D) TMD metals also opens up the possibility for control of these electronic phase transitions by electrostatic gating. Here we demonstrate reversible tuning of superconductivity and CDW order in model 2D TMD metal NbSe$_2$ by an ionic liquid gate. A variation up to ~ 50% in the superconducting transition temperature has been observed, accompanied by a correlated evolution of the CDW order. We find that the doping dependence of the superconducting and CDW phase transition in 2D NbSe$_2$ can be understood by a varying electron-phonon coupling strength induced by the gate-modulated carrier density and the electronic density of states near the Fermi surface.
We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare earth transition metal arsenide oxide NdCoAsO compound that is isostructural to high temperature superconductor NdFeAsO. Four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and anti-ferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained anti-ferromagnetic and non-superconducting to temperatures down to 10 K and to the highest pressure achieved in this experiment of 53 GPa. A P-T phase diagram for NdCoAsO is presented to a pressure of 53 GPa and low temperatures of 10 K.
We report magneto-optical spectroscopy of gated monolayer MoS$_2$ in high magnetic fields up to 28T and obtain new insights on the many-body interaction of neutral and charged excitons with the resident charges of distinct spin and valley texture. For neutral excitons at low electron doping, we observe a nonlinear valley Zeeman shift due to dipolar spin-interactions that depends sensitively on the local carrier concentration. As the Fermi energy increases to dominate over the other relevant energy scales in the system, the magneto-optical response depends on the occupation of the fully spin-polarized Landau levels in both $K/K^{prime}$ valleys. This manifests itself in a many-body state. Our experiments demonstrate that the exciton in monolayer semiconductors is only a single particle boson close to charge neutrality. We find that away from charge neutrality it smoothly transitions into polaronic states with a distinct spin-valley flavour that is defined by the Landau level quantized spin and valley texture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا