In this paper, we consider a stochastic SIRS model with general incidence rate and perturbed by both white noise and color noise. We determine the threshold $lambda$ that is used to classify the extinction and permanence of the disease. In particular, $lambda<0$ implies that the disease-free $(K, 0, 0)$ is globally asymptotic stable, i.e., the disease will eventually disappear. If $lambda>0$ the epidemic is strongly stochastically permanent. Our result is considered as a significant generalization and improvement over the results in cite{HZ1, GLM1, LOK1, SLJJ1, ZJ1}.