We show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds when p is small, by studying the Bridgeland-King-Reid-Haiman correspondence for tautological bundles on the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld, Ein-Lazarsfeld-Yang and gives a partial answer to some of their questions. As an application of our results, we show how to use syzygies to bound the irrationality of a variety.
We develop a theory of ``ad hoc Chern characters for twisted matrix factorizations associated to a scheme $X$, a line bundle ${mathcal L}$, and a regular global section $W in Gamma(X, {mathcal L})$. As an application, we establish the vanishing, in certain cases, of $h_c^R(M,N)$, the higher Herbrand difference, and, $eta_c^R(M,N)$, the higher codimensional analogue of Hochsters theta pairing, where $R$ is a complete intersection of codimension $c$ with isolated singularities and $M$ and $N$ are finitely generated $R$-modules. Specifically, we prove such vanishing if $R = Q/(f_1, dots, f_c)$ has only isolated singularities, $Q$ is a smooth $k$-algebra, $k$ is a field of characteristic $0$, the $f_i$s form a regular sequence, and $c geq 2$.
In this paper, which is work in progress, the results in [Singular Hessians, J. Algebra 282 (2004), no. 1, 195--204], for polynomial Hessians with determinant zero in small dimensions $r+1$, are generalized to similar results in arbitrary dimension, for polynomial Hessians with rank r. All of this is over a field $K$ of characteristic zero. The results in [Singular Hessians, J. Algebra 282 (2004), no. 1, 195--204] are also reproved in a different perspective. One of these results is the classification by Gordan and Noether of homogeneous polynomials in $5$ variables, for which the Hessians determinant is zero. This result is generalized to homogeneous polynomials in general, for which the Hessian rank is 4. Up to a linear transformation, such a polynomial is either contained in $K[x_1,x_2,x_3,x_4]$, or contained in $$ K[x_1,x_2,p_3(x_1,x_2)x_3+p_4(x_1,x_2)x_4+cdots+p_n(x_1,x_2)x_n] $$ for certain $p_3,p_4,ldots,p_n in K[x_1,x_2]$ which are homogeneous of the same degree. Furthermore, a new result which is similar to those in [Singular Hessians, J. Algebra 282 (2004), no. 1, 195--204], is added, namely about polynomials $h in K[x_1,x_2,x_3,x_4,x_5]$, for which the last four rows of the Hessian matrix of $t h$ are dependent. Here, $t$ is a variable, which is not one of those with respect to which the Hessian is taken. This result is generalized to arbitrary dimension as well: the Hessian rank of $t h$ is $4$ and the last row of the Hessian matrix of $t h$ is independent of the other rows.