Compact Star of Holographic Nuclear Matter and GW170817


Abstract in English

We use a holographic model of quantum chromodynamics to extract the equation of state (EoS) for the cold nuclear matter of moderate baryon density. This model is based on the Sakai-Sugimoto model in the deconfined Wittens geometry with the additional point-like D4-brane instanton configuration as the holographic baryons. Our EoS takes the following doubly-polytropic form: $ epsilon=2.629 {cal A}^{-0.192} p^{1.192}+0.131 {cal A}^{0.544} p^{0.456}$ with $cal A$ a tunable parameter of order $10^{-1}$, where $epsilon$ and $p$ are the energy density and pressure, respectively. The sound speed satisfies the causality constraint and breaks the sound barrier. We solve the Tolman-Oppenheimer-Volkoff equations for the compact stars and obtain the reasonable compactness for the proper choices of $cal A$. Based on these configurations we further calculate the tidal deformability of the single and binary stars. We find our results agree with the inferred values of LIGO/Virgo data analysis for GW170817.

Download