The flat band has attracted a lot of attention because it gives rise to many exotic phases, as recently demonstrated in magic angle twisted bilayer graphene. Here, based on first-principles calculations, we identify a metal-insulator transition in boron triangular Kagome lattice with a spin-polarized flat band at 2/3-filling. This phase transition is accompanied by the formation of a Wigner crystal, which is driven by Fermi surface nesting effect and thereby strong electron-phonon interactions, keeping ferromagnetism. Our calculation results suggest that boron triangular Kagome lattices with partially filled flat bands may open a new playground for many exotic quantum phases in two-dimensional systems, such as Winger crystallization and fractional quantum Hall states.