Do you want to publish a course? Click here

The strong running coupling from the gauge sector of Domain Wall lattice QCD with physical quark masses

117   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We report on the first computation of the strong running coupling at the physical point (physical pion mass) from the ghost-gluon vertex, computed from lattice simulations with three flavors of Domain Wall fermions. We find $alpha_{overline{rm MS}}(m_Z^2)=0.1172(11)$, in remarkably good agreement with the world-wide average. Our computational bridge to this value is the Taylor-scheme strong coupling, which has been revealed of great interest by itself because it can be directly related to the quark-gluon interaction kernel in continuum approaches to the QCD bound-state problem.



rate research

Read More

We present results for several light hadronic quantities ($f_pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit with a number of other ensembles with heavier pion masses. We use the physical values of $m_pi$, $m_K$ and $m_Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $bar {rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$, in the RGI scheme, 0.750(15) and the $bar{rm MS}$ scheme at 3 GeV, 0.530(11).
392 - R.A. Soltz , C. DeTar , F. Karsch 2015
Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.
We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
Matrix elements of six-quark operators are needed to extract new physics constraints from experimental searches for neutron-antineutron oscillations. This work presents in detail the first lattice quantum chromodynamics calculations of the necessary neutron-antineutron transition matrix elements including calculation methods and discussions of systematic uncertainties. Implications of isospin and chiral symmetry on the matrix elements, power counting in the isospin limit, and renormalization of a chiral basis of six-quark operators are discussed. Calculations are performed with a chiral-symmetric discretization of the quark action and physical light quark masses in order to avoid the need for chiral extrapolation. Non-perturbative renormalization is performed, including a study of lattice cutoff effects. Excited-state effects are studied using two nucleon operators and multiple values of source-sink separation. Results for the dominant matrix elements are found to be significantly larger compared to previous results from the MIT bag model. Future calculations are needed to fully account for systematic uncertainties associated with discretization and finite-volume effects but are not expected to significantly affect this conclusion.
We present a review of our numerical studies of the running coupling constant, gluon and ghost propagators, ghost-gluon vertex and ghost condensate for the case of pure SU(2) lattice gauge theory in the minimal Landau gauge. Emphasis is given to the infrared regime, in order to investigate the confinement mechanisms of QCD. We compare our results to other theoretical and phenomenological studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا