Do you want to publish a course? Click here

Incremental Transfer Learning in Two-pass Information Bottleneck based Speaker Diarization System for Meetings

102   0   0.0 ( 0 )
 Added by Nauman Dawalatabad
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The two-pass information bottleneck (TPIB) based speaker diarization system operates independently on different conversational recordings. TPIB system does not consider previously learned speaker discriminative information while diarizing new conversations. Hence, the real time factor (RTF) of TPIB system is high owing to the training time required for the artificial neural network (ANN). This paper attempts to improve the RTF of the TPIB system using an incremental transfer learning approach where the parameters learned by the ANN from other conversations are updated using current conversation rather than learning parameters from scratch. This reduces the RTF significantly. The effectiveness of the proposed approach compared to the baseline IB and the TPIB systems is demonstrated on standard NIST and AMI conversational meeting datasets. With a minor degradation in performance, the proposed system shows a significant improvement of 33.07% and 24.45% in RTF with respect to TPIB system on the NIST RT-04Eval and AMI-1 datasets, respectively.



rate research

Read More

Speaker diarization is an important problem that is topical, and is especially useful as a preprocessor for conversational speech related applications. The objective of this paper is two-fold: (i) segment initialization by uniformly distributing speaker information across the initial segments, and (ii) incorporating speaker discriminative features within the unsupervised diarization framework. In the first part of the work, a varying length segment initialization technique for Information Bottleneck (IB) based speaker diarization system using phoneme rate as the side information is proposed. This initialization distributes speaker information uniformly across the segments and provides a better starting point for IB based clustering. In the second part of the work, we present a Two-Pass Information Bottleneck (TPIB) based speaker diarization system that incorporates speaker discriminative features during the process of diarization. The TPIB based speaker diarization system has shown improvement over the baseline IB based system. During the first pass of the TPIB system, a coarse segmentation is performed using IB based clustering. The alignments obtained are used to generate speaker discriminative features using a shallow feed-forward neural network and linear discriminant analysis. The discriminative features obtained are used in the second pass to obtain the final speaker boundaries. In the final part of the paper, variable segment initialization is combined with the TPIB framework. This leverages the advantages of better segment initialization and speaker discriminative features that results in an additional improvement in performance. An evaluation on standard meeting datasets shows that a significant absolute improvement of 3.9% and 4.7% is obtained on the NIST and AMI datasets, respectively.
Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speakers identity. These identities are not known a priori, so a clustering algorithm is typically employed, which is traditionally based solely on audio. Under noisy conditions, however, such an approach poses the risk of generating unreliable speaker clusters. In this work we aim to utilize linguistic information as a supplemental modality to identify the various speakers in a more robust way. We are focused on conversational scenarios where the speakers assume distinct roles and are expected to follow different linguistic patterns. This distinct linguistic variability can be exploited to help us construct the speaker identities. That way, we are able to boost the diarization performance by converting the clustering task to a classification one. The proposed method is applied in real-world dyadic psychotherapy interactions between a provider and a patient and demonstrated to show improved results.
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to address issues in handling real multi-talker recordings. We then present the details of the components, which include Res2Net-based speaker embedding extractor, conformer-based continuous speech separation with leakage filtering, and a modified DOVER (short for Diarization Output Voting Error Reduction) method for system fusion. We evaluate the systems with the data set provided by VoxSRCchallenge 2020, which contains real-life multi-talker audio collected from YouTube. Our best system achieves 3.71% and 6.23% of the diarization error rate (DER) on development set and evaluation set, respectively, being ranked the 1st at the diarization track of the challenge.
The performance of most speaker diarization systems with x-vector embeddings is both vulnerable to noisy environments and lacks domain robustness. Earlier work on speaker diarization using generative adversarial network (GAN) with an encoder network (ClusterGAN) to project input x-vectors into a latent space has shown promising performance on meeting data. In this paper, we extend the ClusterGAN network to improve diarization robustness and enable rapid generalization across various challenging domains. To this end, we fetch the pre-trained encoder from the ClusterGAN and fine-tune it by using prototypical loss (meta-ClusterGAN or MCGAN) under the meta-learning paradigm. Experiments are conducted on CALLHOME telephonic conversations, AMI meeting data, DIHARD II (dev set) which includes challenging multi-domain corpus, and two child-clinician interaction corpora (ADOS, BOSCC) related to the autism spectrum disorder domain. Extensive analyses of the experimental data are done to investigate the effectiveness of the proposed ClusterGAN and MCGAN embeddings over x-vectors. The results show that the proposed embeddings with normalized maximum eigengap spectral clustering (NME-SC) back-end consistently outperform Kaldi state-of-the-art z-vector diarization system. Finally, we employ embedding fusion with x-vectors to provide further improvement in diarization performance. We achieve a relative diarization error rate (DER) improvement of 6.67% to 53.93% on the aforementioned datasets using the proposed fused embeddings over x-vectors. Besides, the MCGAN embeddings provide better performance in the number of speakers estimation and short speech segment diarization as compared to x-vectors and ClusterGAN in telephonic data.
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy. To integrate lexical and acoustic information in a comprehensive way during clustering, we introduce an adjacency matrix integration for spectral clustering. Since words and word boundary information for word-level speaker turn probability estimation are provided by a speech recognition system, our proposed method works without any human intervention for manual transcriptions. We show that the proposed method improves diarization performance on various evaluation datasets compared to the baseline diarization system using acoustic information only in speaker embeddings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا