No Arabic abstract
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70, text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${beta = 0.32(1)}$, ${gamma = 1.41(1)}$, and ${delta = 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_text{c}$ onto two universal curves in the plot of $M/|varepsilon|^beta$ versus $H/|varepsilon|^{beta+gamma}$, where ${varepsilon = T/T_text{c} -1}$. The obtained $beta$ and $gamma$ values show asymmetric behaviors on the ${T < T_text{c}}$ and the ${T > T_text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations.
Transition metal oxides of the $4d$ and $5d$ block have recently become the targets of materials discovery, largely due to their strong spin-orbit coupling that can generate exotic magnetic and electronic states. Here we report the high pressure synthesis of Lu$_2$Rh$_2$O$_7$, a new cubic pyrochlore oxide based on $4d^5$ Rh$^{4+}$ and characterizations via thermodynamic, electrical transport, and muon spin relaxation measurements. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetic contribution, while heat capacity shows an enhanced Sommerfeld coefficient, $gamma$ = 21.8(1) mJ/mol-Rh K$^2$. Muon spin relaxation measurements confirm that Lu$_2$Rh$_2$O$_7$ remains paramagnetic down to 2 K. Taken in combination, these three measurements suggest that Lu$_2$Rh$_2$O$_7$ is a correlated paramagnetic metal with a Wilson ratio of $R_W = 2.5$. However, electric transport measurements present a striking contradiction as the resistivity of Lu$_2$Rh$_2$O$_7$ is observed to monotonically increase with decreasing temperature, indicative of a nonmetallic state. Furthermore, although the magnitude of the resistivity is that of a semiconductor, the temperature dependence does not obey any conventional form. Thus, we propose that Lu$_2$Rh$_2$O$_7$ may belong to the same novel class of non-Fermi liquids as the nonmetallic metal FeCrAs.
The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms.
The search for quantum spin liquids (QSL) -- topological magnets with fractionalized excitations -- has been a central theme in condensed matter and materials physics. While theories are no longer in short supply, tracking down materials has turned out to be remarkably tricky, in large part because of the difficulty to diagnose experimentally a state with only topological, rather than conventional, forms of order. Pyrochlore systems have proven particularly promising, hosting a classical Coulomb phase in the spin ices Dy/Ho$_2$Ti$_2$O$_7$, with subsequent proposals of candidate QSLs in other pyrochlores. Connecting experiment with detailed theory exhibiting a robust QSL has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effective $S=1/2$ pyrochlore Ce$_2$Zr$_2$O$_7$, we analyse recent thermodynamic and neutron scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo and analytical spin dynamics calculations. Its parameter values suggest a previously unobserved exotic phase, a $pi$-flux U(1) QSL. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by crystal imperfections or magnetic impurities, while also hiding some otherwise characteristic signatures from neutrons, making this QSL arguably more stable than its more conventional counterparts.
We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $psi_2$ and $psi_3$ states of the $Gamma_5$ irreducible representation which describes the ground state of XY pyrochlore antiferromagnets. At low field, domain selection effects are systematically at play. In addition, for $[001]$, a phase transition is reported towards a $psi_3$ structure at a characteristic field $H_c^{001}=$ 43 mT. For $[1bar{1}0]$ and $[111]$, the spins are continuously tilted by the field from the $psi_2$ state, and no phase transition is found while domain selection gives rise to sharp anomalies in the field dependence of the Bragg peaks intensity. For $[1bar{1}0]$, these results are confirmed by high resolution inelastic neutron scattering experiments, which in addition allow us to determine the field dependence of the spin gap. This study agrees qualitatively with the scenario proposed theoretically by Maryasin {it et al.} [Phys. Rev. B {bf 93}, 100406(R) (2016)], yet the strength of the field induced anisotropies is significantly different from theory.
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-dependent susceptibility and an extremely slow spin dynamics---extends to about 70 mT, at which it gives way to another phase. The field dependence of the susceptibility of this second phase, which extends to about 0.6 T, indicates the presence of a weak magnetization plateau below 50 mK, as has been predicted by a single-tetrahedron four-spin model, giving support to the underlying proposal that the disordered low-field ground state of Tb$_2$Ti$_2$O$_7$ is a quantum spin ice.