Do you want to publish a course? Click here

Optomechanically amplified wavelength conversion in diamond microcavities

65   0   0.0 ( 0 )
 Added by Matthew Mitchell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient, low noise conversion between different colors of light is a necessary tool for interfacing quantum optical technologies that have different operating wavelengths. Optomechanically mediated wavelength conversion and amplification is a potential method for realizing this technology, and is demonstrated here in microdisks fabricated from single crystal diamond--a material that can host a wide range of quantum emitters. Frequency up--conversion is demonstrated with internal conversion efficiency of $sim$45% using both narrow and broadband probe fields, and optomechanical frequency conversion with amplification is demonstrated in the optical regime for the first time.



rate research

Read More

Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dissipation and optical absorption. However the nanoscale dimensions and mechanical isolation of these devices can make them susceptible to thermo-optic instability when operating at the high intracavity field strengths needed to realize coherent photon--phonon coupling. In this work, we overcome these effects through engineering of the device geometry, enabling operation with large photon numbers in a previously thermally unstable regime of red-detuning. We demonstrate optomechanically induced transparency with cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that these device will enable coherent optomechanical manipulation of diamond spin systems.
Surface states generally degrade semiconductor device performance by raising the charge injection barrier height, introducing localized trap states, inducing surface leakage current, and altering the electric potential. Therefore, there has been an endless effort to use various surface passivation treatments to suppress the undesirable impacts of the surface states. We show that the giant built-in electric field created by the surface states can be harnessed to enable passive wavelength conversion without utilizing any nonlinear optical phenomena. Photo-excited surface plasmons are coupled to the surface states to generate an electron gas, which is routed to a nanoantenna array through the giant electric field created by the surface states. The induced current on the nanoantennas, which contains mixing product of different optical frequency components, generates radiation at the beat frequencies of the incident photons. We utilize the unprecedented functionalities of plasmon-coupled surface states to demonstrate passive wavelength conversion of nanojoule optical pulses at a 1550 nm center wavelength to terahertz regime with record-high efficiencies that exceed nonlinear optical methods by 4-orders of magnitude. The presented scheme can be used for optical wavelength conversion to different parts of the electromagnetic spectrum ranging from microwave to infrared regimes by using appropriate optical beat frequencies.
Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency $> 4.4times10^{-4}, text{mW}^{-1}$ is demonstrated in a gallium phosphide microdisk cavity supporting high-$Q$ modes at visible ($Q sim 10^4$) and infrared ($Q sim 10^5$) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using $sim 360,mu$W of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.
76 - T. Bodiya , V. Sudhir , C. Wipf 2018
Optical interferometers with suspended mirrors are the archetype of all current audio-frequency gravitational-wave detectors. The radiation pressure interaction between the motion of the mirror and the circulating optical field in such interferometers represents a pristine form of light-matter coupling, largely due to 30 years of effort in developing high quality optical materials with low mechanical dissipation. However, in all current suspended interferometers, the radiation pressure interaction is too weak to be useful as a resource, and too strong to be neglected. Here, we demonstrate a meter-long interferometer with suspended mirrors, of effective mass $~ 125$ g, where the radiation pressure interaction is enhanced by strong optical pumping to realize a cooperativity of $50$. We probe this regime by observing optomechanically-induced transparency of a weak on-resonant probe. The low resonant frequency and high-Q of the mechanical oscillator allows us to demonstrate transparency windows barely $100$ mHz wide at room temperature. Together with a near-unity ($sim 99.9%$) out-coupling efficiency, our system saturates the theoretical delay-bandwidth product, rendering it an optical buffer capable of seconds-long storage times.
We demonstrate two-dimensional photonic crystal cavities operating at telecommunication wavelengths in a single-crystal diamond membrane. We use a high-optical-quality and thin (~ 300 nm) diamond membrane, supported by a polycrystalline diamond frame, to realize fully suspended two-dimensional photonic crystal cavities with a high theoretical quality factor of ~ $8times10^6$ and a relatively small mode volume of ~2$({lambda}/n)^3$. The cavities are fabricated in the membrane using electron-beam lithography and vertical dry etching. We observe cavity resonances over a wide wavelength range spanning the telecommunication O- and S-bands (1360 nm-1470 nm) with Q factors of up to ~1800. Our method offers a new direction for on-chip diamond nanophotonic applications in the telecommunication-wavelength range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا