The Lawvere condition and a classification theorem for Maltsev categories


Abstract in English

A classification theorem for three different sorts of Maltsev categories is proven. The theorem provides a classification for Maltsev category, naturally Maltsev category, and weakly Maltsev category in terms of classifying classes of spans. The class of all spans characterizes naturally Maltsev categories. The class of relations (i.e. jointly monomorphic spans) characterizes Maltsev categories. The class of strong relations (i.e. jointly strongly monomorphic spans) characterizes weakly Maltsev categories. The result is based on the uniqueness of internal categorical structures such as internal category and internal groupoid (Lawvere condition). The uniqueness of these structures is viewed as a property on their underlying reflexive graphs, restricted to the classifying spans. The class of classifying spans is combined, via a new compatibility condition, with split squares. This is analogous to orthogonality between spans and cospans. The result is a general classifying scheme which covers the main characterizations for Maltsev like categories. The class of positive relations has recently been shown to characterize Goursat categories and hence it is a new example that fits in this general scheme.

Download