Transferring the quantum state of electrons across a Fermi sea with Coulomb interaction


Abstract in English

The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island within which the electrons are trapped much longer than their quantum lifetime. This effect originates from the low temperature freezing of the islands charge $Q$ which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such high-fidelity quantum state imprinting is established between well-separated injection and emission locations, through two-path interferences in the integer quantum Hall regime. The added electron quantum phase of $2pi Q/e$ can allow for strong and decoherence-free entanglement of propagating electrons, and notably of flying qubits.

Download