More than a decade after the discovery of graphene, ballistic transport in nanostructures based on this intriguing material still represents a challenging field of research in two-dimensional electronics. The presence of rough edges in nanostructures based on this material prevents the appearance of truly ballistic electron transport as theo-re-tically predicted and, therefore, not well-developed plateaus of conductance have been revealed to date. In this work we report on a novel implementation of the cryo-etching method, which enabled us to fabricate graphene nanoconstrictions encapsulated between hexagonal boron nitride thin films with unprecedented control of the structure edges. High quality smooth nanometer-rough edges are characterized by atomic force microscopy and a clear correlation between low roughness and the existence of well-developed quantized conductance steps with the concomitant occurrence of ballistic transport is found at low temperature. In par-ti-cu-lar, we come upon exact 2$e^{2}/h$ quantization steps of conductance at zero magnetic field due to size quantization, as it has been theoretically predicted for truly ballistic electron transport through graphene nanoconstrictions.