Due to their possibility to encode information and realize low-energy-consumption quantum devices, control and manipulation of the valley degree of freedom have been widely studied in electronic systems. In contrast, the phononic counterpart--valley phononics--has been largely unexplored, despite the importance in both fundamental science and practical applications. In this work, we demonstrate that the control of valleys is also applicable for phonons in graphene by using a grain boundary. In particular, perfect valley filtering effect is observed at certain energy windows for flexural modes and found to be closely related to the anisotropy of phonon valley pockets. Moreover, valley filtering may be further improved using Fano-like resonance. Our findings reveal the possibility of valley phononics, paving the road towards purposeful phonon engineering and future valley phononics.