$h/e$ Oscillations in Interlayer Transport of Delafossites


Abstract in English

Transport of electrons in a bulk metal is usually well captured by their particle-like aspects, while their wave-like nature is commonly harder to observe. Microstructures can be are fully designed to reveal the quantum phase, for example mesoscopic metal rings resembling interferometers. Here we report a new type of phase coherent oscillation of the out-of-plane magnetoresistance in the layered delafossites PdCoO$_2$ and PtCoO$_2$. The oscillation period is equivalent to that determined by the magnetic flux quantum, $h/e$, threading an area defined by the atomic interlayer separation and the sample width. The phase of the electron wave function in these crystals appears remarkably robust over macroscopic length scales exceeding 10$mu$m and persisting up to elevated temperatures of $T$>50K. We show that, while the experimental signal cannot be explained in a standard Aharonov-Bohm analysis, it arises due to periodic field-modulation of the out-of-plane hopping. These results demonstrate extraordinary single-particle quantum coherence lengths in the delafossites, and identify a new form of quantum interference in solids.

Download