Do you want to publish a course? Click here

High-Precision X-ray Timing of Three Millisecond Pulsars with NICER: Stability Estimates and Comparison with Radio

235   0   0.0 ( 0 )
 Added by Julia Deneva
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Neutron Star Interior Composition Explorer (NICER) is an X-ray astrophysics payload on the International Space Station. It enables unprecedented high-precision timing of millisecond pulsars without the pulse broadening and delays due to dispersion and scattering within the interstellar medium that plague radio timing. We present initial timing results from a year of data on the millisecond pulsars PSR B1937+21 and PSR J0218+4232, and nine months of data on PSR B1821-24. NICER time-of-arrival uncertainties for the three pulsars are consistent with theoretical lower bounds and simulations based on their pulse shape templates and average source and background photon count rates. To estimate timing stability, we use the $sigma_z$ measure, which is based on the average of the cubic coefficients of polynomial fits to subsets of timing residuals. So far we are achieving timing stabilities $sigma_z approx 3 times 10^{-14}$ for PSR B1937+21 and on the order of $10^{-12}$ for PSRs B1821$-$24 and J0218+4232. Within the span of our textit{NICER} data we do not yet see the characteristic break point in the slope of $sigma_z$; detection of such a break would indicate that further improvement in the cumulative root-mean-square (RMS) timing residual is limited by timing noise. We see this break point in our comparison radio data sets for PSR B1821-24 and PSR B1937+21 on time scales of $> 2$ years.



rate research

Read More

We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600$-$3053 and J1918$-$0642, implying pulsar and companion masses $m_p=1.22_{-0.35}^{+0.5} text{M}_{odot}$, $m_c = 0.21_{-0.04}^{+0.06} text{M}_{odot }$ and $m_p=1.25_{-0.4}^{+0.6} text{M}_{odot}$, $m_c = 0.23_{-0.05}^{+0.07} text{M}_{odot }$, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012$+$5307 and J1909$-$3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600$-$3053 and J1909$-$3744.
We present two years of Neutron star Interior Composition Explorer (NICER) X-ray observations of three energetic rotation-powered millisecond pulsars (MSPs): PSRs B1937+21, B1821-24, and J0218+4232. We fit Gaussians and Lorentzians to the pulse profiles for different energy sub-bands of the soft X-ray regime to measure the energy dependence of pulse separation and width. We find that the separation between pulse components of PSR J0218+4232 decreases with increasing energy at $gt 3sigma$ confidence. The 95% upper limit on pulse separation evolution for PSRs B1937+21 and B1821-24 is less than 2 milliperiods per keV. Our phase-resolved spectral results provide updated constraints on the non-thermal X-ray emission of these three pulsars. The photon indices of the modeled X-ray emission spectra for each pulse component of PSR B1937+21 are inconsistent with each other at the 90% confidence level, suggesting different emission origins for each pulse. We find that the PSR B1821-24 and PSR J0218+4232 emission spectra are invariant with phase at the 90% confidence level. We describe the implications of our profile and spectral results in the context of equatorial current sheet emission models for these three MSPs with non-thermal, magnetospheric X-ray emission.
197 - S. Guillot , M. Kerr , P. S. Ray 2019
NICER observed several rotation-powered millisecond pulsars to search for or confirm the presence of X-ray pulsations. When broad and sine-like, these pulsations may indicate thermal emission from hot polar caps at the magnetic poles on the neutron star surface. We report confident detections ($ge4.7sigma$ after background filtering) of X-ray pulsations for five of the seven pulsars in our target sample: PSR J0614-3329, PSR J0636+5129, PSR J0751+1807, PSR J1012+5307, and PSR J2241-5236, while PSR J1552+5437 and PSR J1744-1134 remain undetected. Of those, only PSR J0751+1807 and PSR J1012+5307 had pulsations previously detected at the 1.7$sigma$ and almost 3$sigma$ confidence levels, respectively, in XMM-Newton data. All detected sources exhibit broad sine-like pulses, which are indicative of surface thermal radiation. As such, these MSPs are promising targets for future X-ray observations aimed at constraining the neutron star mass-radius relation and the dense matter equation of state using detailed pulse profile modeling. Furthermore, we find that three of the detected millisecond pulsars exhibit a significant phase offset between their X-ray and radio pulses.
We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during re-processing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546-5925) has a spin period $P=7.8$ ms and is isolated. The other two (PSR J0921-5202 with $P=9.7$ ms and PSR J1146-6610 with $P=3.7$ ms) are in binary systems around low-mass ($>0.2 M_{odot}$) companions. Their respective orbital periods are $38$.2 d and $62.8$ d. While PSR J0921-5202 has a low orbital eccentricity $e=1.3 times 10^{-5}$, in keeping with many other Galactic MSPs, PSR J1146-6610 has a significantly larger eccentricity, $e = 7.4 times 10^{-3}$. This makes it a likely member of a group of eccentric MSP-He white dwarf binary systems in the Galactic disk whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellites Large Area Telescope, but no $gamma$-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.
We performed deep observations to search for radio pulsations in the directions of 375 unassociated Fermi Large Area Telescope (LAT) gamma-ray sources using the Giant Metrewave Radio Telescope (GMRT) at 322 and 607 MHz. In this paper we report the discovery of three millisecond pulsars (MSPs), PSR J0248+4230, PSR J1207$-$5050 and PSR J1536$-$4948. We conducted follow up timing observations for around 5 years with the GMRT and derived phase coherent timing models for these MSPs. PSR J0248$+$4230 and J1207$-$5050 are isolated MSPs having periodicities of 2.60 ms and 4.84 ms. PSR J1536-4948 is a 3.07 ms pulsar in a binary system with orbital period of around 62 days about a companion of minimum mass 0.32 solar mass. We also present multi-frequency pulse profiles of these MSPs from the GMRT observations. PSR J1536-4948 is an MSP with an extremely wide pulse profile having multiple components. Using the radio timing ephemeris we subsequently detected gamma-ray pulsations from these three MSPs, confirming them as the sources powering the gamma-ray emission. For PSR J1536-4948 we performed combined radio-gamma-ray timing using around 11.6 years of gamma-ray pulse times of arrivals (TOAs) along with the radio TOAs. PSR J1536-4948 also shows evidence for pulsed gamma-ray emission out to above 25 GeV, confirming earlier associations of this MSP with a >10 GeV point source. The multi-wavelength pulse profiles of all three MSPs offer challenges to models of radio and gamma-ray emission in pulsar magnetospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا