Do you want to publish a course? Click here

DEDPUL: Difference-of-Estimated-Densities-based Positive-Unlabeled Learning

115   0   0.0 ( 0 )
 Added by Dmitry Ivanov
 Publication date 2019
and research's language is English
 Authors Dmitry Ivanov




Ask ChatGPT about the research

Positive-Unlabeled (PU) learning is an analog to supervised binary classification for the case when only the positive sample is clean, while the negative sample is contaminated with latent instances of positive class and hence can be considered as an unlabeled mixture. The objectives are to classify the unlabeled sample and train an unbiased PN classifier, which generally requires to identify the mixing proportions of positives and negatives first. Recently, unbiased risk estimation framework has achieved state-of-the-art performance in PU learning. This approach, however, exhibits two major bottlenecks. First, the mixing proportions are assumed to be identified, i.e. known in the domain or estimated with additional methods. Second, the approach relies on the classifier being a neural network. In this paper, we propose DEDPUL, a method that solves PU Learning without the aforementioned issues. The mechanism behind DEDPUL is to apply a computationally cheap post-processing procedure to the predictions of any classifier trained to distinguish positive and unlabeled data. Instead of assuming the proportions to be identified, DEDPUL estimates them alongside with classifying unlabeled sample. Experiments show that DEDPUL outperforms the current state-of-the-art in both proportion estimation and PU Classification.

rate research

Read More

82 - Danfei Xu , Misha Denil 2019
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the reward model to achieve high reward behaviors that do not correspond to the intended task. These reward delusions can lead to unintended and even dangerous behaviors. On the other hand, adversarial imitation learning frameworks tend to suffer the opposite problem, where the discriminator learns to trivially distinguish agent and expert behavior, resulting in reward models that produce low reward signal regardless of the input state. In this paper, we connect these two classes of reward learning methods to positive-unlabeled (PU) learning, and we show that by applying a large-scale PU learning algorithm to the reward learning problem, we can address both the reward under- and over-estimation problems simultaneously. Our approach drastically improves both GAIL and supervised reward learning, without any additional assumptions.
171 - Tong Wei , Feng Shi , Hai Wang 2020
Learning from positive and unlabeled data (PU learning) is prevalent in practical applications where only a couple of examples are positively labeled. Previous PU learning studies typically rely on existing samples such that the data distribution is not extensively explored. In this work, we propose a simple yet effective data augmentation method, coined~algo, based on emph{consistency regularization} which provides a new perspective of using PU data. In particular, the proposed~algo~incorporates supervised and unsupervised consistency training to generate augmented data. To facilitate supervised consistency, reliable negative examples are mined from unlabeled data due to the absence of negative samples. Unsupervised consistency is further encouraged between unlabeled datapoints. In addition,~algo~reduces margin loss between positive and unlabeled pairs, which explicitly optimizes AUC and yields faster convergence. Finally, we conduct a series of studies to demonstrate the effectiveness of consistency regularization. We examined three kinds of reliable negative mining methods. We show that~algo~achieves an averaged improvement of classification error from 16.49 to 13.09 on the CIFAR-10 dataset across different positive data amount.
This paper defines a positive and unlabeled classification problem for standard GANs, which then leads to a novel technique to stabilize the training of the discriminator in GANs. Traditionally, real data are taken as positive while generated data are negative. This positive-negative classification criterion was kept fixed all through the learning process of the discriminator without considering the gradually improved quality of generated data, even if they could be more realistic than real data at times. In contrast, it is more reasonable to treat the generated data as unlabeled, which could be positive or negative according to their quality. The discriminator is thus a classifier for this positive and unlabeled classification problem, and we derive a new Positive-Unlabeled GAN (PUGAN). We theoretically discuss the global optimality the proposed model will achieve and the equivalent optimization goal. Empirically, we find that PUGAN can achieve comparable or even better performance than those sophisticated discriminator stabilization methods.
Understanding the relationships between biomedical terms like viruses, drugs, and symptoms is essential in the fight against diseases. Many attempts have been made to introduce the use of machine learning to the scientific process of hypothesis generation(HG), which refers to the discovery of meaningful implicit connections between biomedical terms. However, most existing methods fail to truly capture the temporal dynamics of scientific term relations and also assume unobserved connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To break these limits, we formulate this HG problem as future connectivity prediction task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then, the key is to capture the temporal evolution of node pair (term pair) relations from just the positive and unlabeled data. We propose a variational inference model to estimate the positive prior, and incorporate it in the learning of node pair embeddings, which are then used for link prediction. Experiment results on real-world biomedical term relationship datasets and case study analyses on a COVID-19 dataset validate the effectiveness of the proposed model.
169 - Yiwen Sun , Kun Fu , Zheng Wang 2020
Recently, deep learning have achieved promising results in Estimated Time of Arrival (ETA), which is considered as predicting the travel time from the origin to the destination along a given path. One of the key techniques is to use embedding vectors to represent the elements of road network, such as the links (road segments). However, the embedding suffers from the data sparsity problem that many links in the road network are traversed by too few floating cars even in large ride-hailing platforms like Uber and DiDi. Insufficient data makes the embedding vectors in an under-fitting status, which undermines the accuracy of ETA prediction. To address the data sparsity problem, we propose the Road Network Metric Learning framework for ETA (RNML-ETA). It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors. We further propose the triangle loss, a novel loss function to improve the efficiency of metric learning. We validated the effectiveness of RNML-ETA on large scale real-world datasets, by showing that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا