Phase stabilization by electronic entropy in plutonium


Abstract in English

(Pu) has an unusually rich phase diagram that includes seven distinct solid state phases and an unusually large 25% collapse in volume from its delta phase to its low temperature alpha phase via a series of structural transitions. Despite considerable advances in our understanding of strong electronic correlations within various structural phases of Pu and other actinides, the thermodynamic mechanism responsible for driving the volume collapse has continued to remain a mystery. Here we utilize the unique sensitivity of magnetostriction measurements to unstable f electron shells to uncover the crucial role played by electronic entropy in stabilizing delta-Pu against volume collapse. We find that in contrast to valence fluctuating rare earths, which typically have a single f electron shell instability whose excitations drive the volume in a single direction in temperature and magnetic field, delta-Pu exhibits two such instabilities whose excitations drive the volume in opposite directions while producing an abundance of entropy at elevated temperatures. The two instabilities imply a near degeneracy between several different configurations of the 5f atomic shell, giving rise to a considerably richer behavior than found in rare earth metals. We use heat capacity measurements to establish a robust thermodynamic connection between the two excitation energies, the atomic volume, and the previously reported excess entropy of delta-Pu at elevated temperatures.

Download