Appearance of T$_d^*$ phase across the T$_{d}$-1T$^{prime}$ phase boundary in Weyl semimetal MoTe$_{2}$


Abstract in English

Using elastic neutron scattering on single crystals of MoTe$_{2}$ and Mo$_{1-x}$W$_{x}$Te$_{2}$ ($x lesssim 0.01$), the temperature dependence of the recently discovered T$_{d}^{*}$ phase, present between the low temperature orthorhombic T$_{d}$ phase and high temperature monoclinic 1T$^{prime}$ phase, is explored. The T$_{d}^{*}$ phase appears only on warming from T$_{d}$ and is observed in the hysteresis region prior to the 1T$^{prime}$ transition. This phase consists of four layers in its unit cell, and is constructed by an AABB sequence of layer stacking operations rather than the AB and AA sequences of the 1T$^{prime}$ and T$_{d}$ phases, respectively. Though the T$_{d}^{*}$ phase emerges without disorder on warming from T$_{d}$, on cooling from 1T$^{prime}$ diffuse scattering is observed that suggests a frustrated tendency toward the AABB stacking.

Download