No Arabic abstract
Time-aligned lyrics can enrich the music listening experience by enabling karaoke, text-based song retrieval and intra-song navigation, and other applications. Compared to text-to-speech alignment, lyrics alignment remains highly challenging, despite many attempts to combine numerous sub-modules including vocal separation and detection in an effort to break down the problem. Furthermore, training required fine-grained annotations to be available in some form. Here, we present a novel system based on a modified Wave-U-Net architecture, which predicts character probabilities directly from raw audio using learnt multi-scale representations of the various signal components. There are no sub-modules whose interdependencies need to be optimized. Our training procedure is designed to work with weak, line-level annotations available in the real world. With a mean alignment error of 0.35s on a standard dataset our system outperforms the state-of-the-art by an order of magnitude.
Lyrics alignment in long music recordings can be memory exhaustive when performed in a single pass. In this study, we present a novel method that performs audio-to-lyrics alignment with a low memory consumption footprint regardless of the duration of the music recording. The proposed system first spots the anchoring words within the audio signal. With respect to these anchors, the recording is then segmented and a second-pass alignment is performed to obtain the word timings. We show that our audio-to-lyrics alignment system performs competitively with the state-of-the-art, while requiring much less computational resources. In addition, we utilise our lyrics alignment system to segment the music recordings into sentence-level chunks. Notably on the segmented recordings, we report the lyrics transcription scores on a number of benchmark test sets. Finally, our experiments highlight the importance of the source separation step for good performance on the transcription and alignment tasks. For reproducibility, we publicly share our code with the research community.
Convolutional Neural Networks have been extensively explored in the task of automatic music tagging. The problem can be approached by using either engineered time-frequency features or raw audio as input. Modulation filter bank representations that have been actively researched as a basis for timbre perception have the potential to facilitate the extraction of perceptually salient features. We explore end-to-end learned front-ends for audio representation learning, ModNet and SincModNet, that incorporate a temporal modulation processing block. The structure is effectively analogous to a modulation filter bank, where the FIR filter center frequencies are learned in a data-driven manner. The expectation is that a perceptually motivated filter bank can provide a useful representation for identifying music features. Our experimental results provide a fully visualisable and interpretable front-end temporal modulation decomposition of raw audio. We evaluate the performance of our model against the state-of-the-art of music tagging on the MagnaTagATune dataset. We analyse the impact on performance for particular tags when time-frequency bands are subsampled by the modulation filters at a progressively reduced rate. We demonstrate that modulation filtering provides promising results for music tagging and feature representation, without using extensive musical domain knowledge in the design of this front-end.
Training Automatic Speech Recognition (ASR) models under federated learning (FL) settings has attracted a lot of attention recently. However, the FL scenarios often presented in the literature are artificial and fail to capture the complexity of real FL systems. In this paper, we construct a challenging and realistic ASR federated experimental setup consisting of clients with heterogeneous data distributions using the French and Italian sets of the CommonVoice dataset, a large heterogeneous dataset containing thousands of different speakers, acoustic environments and noises. We present the first empirical study on attention-based sequence-to-sequence End-to-End (E2E) ASR model with three aggregation weighting strategies -- standard FedAvg, loss-based aggregation and a novel word error rate (WER)-based aggregation, compared in two realistic FL scenarios: cross-silo with 10 clients and cross-device with 2K and 4K clients. Our analysis on E2E ASR from heterogeneous and realistic federated acoustic models provides the foundations for future research and development of realistic FL-based ASR applications.
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time frame components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.
The unified streaming and non-streaming two-pass (U2) end-to-end model for speech recognition has shown great performance in terms of streaming capability, accuracy, real-time factor (RTF), and latency. In this paper, we present U2++, an enhanced version of U2 to further improve the accuracy. The core idea of U2++ is to use the forward and the backward information of the labeling sequences at the same time at training to learn richer information, and combine the forward and backward prediction at decoding to give more accurate recognition results. We also proposed a new data augmentation method called SpecSub to help the U2++ model to be more accurate and robust. Our experiments show that, compared with U2, U2++ shows faster convergence at training, better robustness to the decoding method, as well as consistent 5% - 8% word error rate reduction gain over U2. On the experiment of AISHELL-1, we achieve a 4.63% character error rate (CER) with a non-streaming setup and 5.05% with a streaming setup with 320ms latency by U2++. To the best of our knowledge, 5.05% is the best-published streaming result on the AISHELL-1 test set.