Do you want to publish a course? Click here

Absolute energy level positions in tin and lead based halide perovskites

139   0   0.0 ( 0 )
 Added by Selina Olthof
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metal-halide perovskites are promising materials for future optoelectronic applications. One intriguing property, important for many applications, is the tunability of the band gap via compositional engineering. While experimental reports on changes in absorption or photoluminescence show rather good agreement for wide variety of compounds, the physical origins of these changes, namely the variations in valence band and conduction band positions, are not well characterized. Knowledge of these band positions is of importance for optimizing the energy level alignment with charge extraction layers in optoelectronic devices. Here, we determine ionization energy and electron affinity values of all primary tin and lead based perovskites using photoelectron spectroscopy data, supported by first-principles calculations. Through analysis of the chemical bonding, we characterize the key energy levels and elucidate their trends via a tight-binding analysis. We demonstrate that energy level variations in perovskites are primarily determined by the relative positions of the atomic energy levels of metal cations and halide anions. Secondary changes in the perovskite energy levels result from the cation-anion interaction strength, which depends on the volume and structural distortions of the perovskite lattices. These results mark a significant step towards understanding the electronic structure of this material class and provides the basis for rational design rules regarding the energetics in perovskite optoelectronics.



rate research

Read More

Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$ and $alpha$-FAPbI$_3$ (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C$_{44}$. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr$_3$. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft $alpha$-FAPbI$_3$.
159 - Chenkun Zhou , Zhao Yuan , Yu Tian 2017
Bulk quantum materials based on zero-dimensional (0D) lead-free organic tin halide perovskites have been developed for the first time, which give broadband Gaussian-shaped and strongly Stokes shifted emissions with quantum efficiencies of up to near-unity at room temperature due to excited state structural reorganization.
The acoustic phonons in the organic-inorganic lead halide perovskites have been reported to have anomalously short lifetimes over a large part of the Brillouin zone. The resulting shortened mean free paths of the phonons have been implicated as the origin of the low thermal conductivity. We apply neutron spectroscopy to show that the same acoustic phonon energy linewidth broadening (corresponding to shortened lifetimes) occurs in the fully inorganic CsPbBr$_{3}$ by comparing the results on the organic-inorganic CH$_{3}$NH$_{3}$PbCl$_{3}$. We investigate the critical dynamics near the three zone boundaries of the cubic $Pmoverline{3}m$ Brillouin zone of CsPbBr$_{3}$ and find energy and momentum broadened dynamics at momentum points where the Cs-site ($A$-site) motions contribute to the cross section. Neutron diffraction is used to confirm that both the Cs and Br sites have unusually large thermal displacements with an anisotropy that mirrors the low temperature structural distortions. The presence of an organic molecule is not necessary to disrupt the low-energy acoustic phonons at momentum transfers located away from the zone center in the lead halide perovskites and such damping may be driven by the large displacements or possibly disorder on the $A$ site.
The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K-edge and Pb L3-edge X-ray absorption with refined ab-initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.
The electronic structure evolution of deficient halide perovskites with a general formula $(A,A)_{1+x}M_{1-x}X_{3-x}$ was investigated using the density functional theory. The focus is placed on characterization of changes in the band gap, band alignment, effective mass, and optical properties of deficient perovskites at various concentrations of defects. We uncover unusual electronic properties of the defect corresponding to a $M!-!X$ vacancy filled with an $A$ cation. This defect repels electrons and holes producing no trap states and, in moderate quantities ($xle0.1$), does not hinder charge transport properties of the material. This behavior is rationalized using a confinement model and provides an additional insight to the defect tolerance of halide perovskites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا