No Arabic abstract
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.
A diffuse flux of astrophysical neutrinos above $100,mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35,mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{mu}:f_tau)_oplusapprox(1:1:1)_oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of $(0:1:0)_oplus$ is excluded at $3.3sigma$, and a purely shower-like composition of $(1:0:0)_oplus$ is excluded at $2.3sigma$.
We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and one repeating FRB. The first improves upon a previous IceCube analysis -- searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV -- by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search, therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope.
Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earths atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E_nu) = 9.9^{+3.9}_{-3.4} times 10^{-19} GeV^{-1} cm^{-2} sr^{-1} s^{-1} ({E_nu / 100 TeV})^{-2}, consistent with IceCubes Southern Hemisphere dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index was performed. We find a spectral index of 2.2^{+0.2}_{-0.2}, which is also in good agreement with the Southern Hemisphere result.
We present a targeted search for blazar flux-correlated high-energy ($varepsilon_ u > 1$ TeV) neutrinos from six bright northern blazars, using the public database of northern-hemisphere neutrinos detected during IC40 40-string operations of the IceCube neutrino observatory (April 2008 to May 2009). Our six targeted blazars are subjects of long-term monitoring campaigns by the VERITAS TeV gamma-ray observatory. We use the publicly-available VERITAS lightcurves to identify periods of excess and flaring emission. These predefined intervals serve as our active temporal windows in a search for an excess of neutrinos, relative to Poisson fluctuations of the near-isotropic atmospheric neutrino background which dominates at these energies. After defining the parameters of an optimized search, we confirm the expected Poisson behavior with Monte Carlo simulations prior to testing for excess neutrinos in the actual data. We make two searches: One for excess neutrinos associated with the bright flares of Mrk 421 that occurred during the IC40 run, and one for excess neutrinos associated with the brightest emission periods of five other blazars (Mrk 501, 1ES 0805+524, 1ES 1218+304, 3C66A, and W Comae), all significantly fainter than the Mrk 421 flares. We find no significant excess of neutrinos from the preselected blazar directions during the selected temporal windows. We derive 90%-confidence upper limits on the number of expected flux-associated neutrinos from each search. These limits are consistent with previous point-source searches and Fermi GeV flux-correlated searches. Our upper limits are sufficiently close to the physically-interesting regime that we anticipate future analyses using already-collected data will either constrain models or yield discovery of the first blazar-associated high-energy neutrinos.