Do you want to publish a course? Click here

Fock contributions to nuclear symmetry energy and its slope parameter based on Lorentz-covariant decomposition of nucleon self-energies

48   0   0.0 ( 0 )
 Added by Tsuyoshi Miyatsu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Using relativistic Hartree-Fock (RHF) approximation, we study the effect of Fock terms on the nuclear properties not only around the saturation density, $rho_{0}$, but also at higher densities. In particular, we investigate how the momentum dependence due to the exchange contribution affects the nuclear symmetry energy and its slope parameter, using the Lorentz-covariant decomposition of nucleon self-energies in an extended version of the RHF model, in which the exchange terms are adjusted so as to reproduce the single-nucleon potential at $rho_{0}$. We find that the Fock contribution suppresses the kinetic term of nuclear symmetry energy at the densities around and beyond $rho_{0}$. It is noticeable that not only the isovector-vector ($rho$) meson but also the isoscalar mesons ($sigma, omega$) and pion make significant influence on the potential term of nuclear symmetry energy through the exchange diagrams. Furthermore, the exchange contribution prevents the slope parameter from increasing monotonically at high densities.



rate research

Read More

The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of asymmetric nuclear matter with consistent two and three body forces. It is shown the interplay among the various two body channels in terms of isospin singlet and triplet components as well as spin singlet and triplet ones. The broad range of baryon densities enables to study the effects of three body force moving from low to high densities.
We study the nuclear iso-scalar giant quadruple resonance~(ISGQR) based on the Boltzmann-Uehling-Uhlenbeck~(BUU) transport equation. The mean-field part of the BUU equation is described by the Skyrme nucleon-nucleon effective interaction, and its collision term, which embodies the two-particle-two-hole ($2$p-$2$h) correlation, is implemented through the stochastic approach. We find that the width of ISGQR for heavy nuclei is exhausted dominated by collisional damping, which is incorporated into the BUU equation through its collision term, and it can be well reproduced through employing a proper in-medium nucleon-nucleon cross section. Based on further Vlasov and BUU calculations with a number of representative Skyrme interactions, the iso-scalar nucleon effective mass at saturation density is extracted respectively as $m^{*}_{s,0}/m$ $=$ $0.83pm0.04$ and $m^{*}_{s,0}/m$ $=$ $0.82pm0.03$ from the measured excitation energy $E_x$ of the ISGQR of $isotope[208]{Pb}$. The small discrepancy between the two constraints indicates the negligible role of $2$p-$2$h correlation in constraining $m_{s,0}^*$ with the ISGQR excitation energy.
A new version of the improved quantum molecular dynamics model has been developed to include standard Skyrme interactions. Four commonly used Skyrme parameter sets, SLy4, SkI2, SkM* and Gs are adopted in the transport model code to calculate the isospin diffusion observables as well as single and double ratios of transverse emitted nucleons. While isospin diffusion observables are sensitive to the symmetry energy term, they are not very sensitive to the nucleon effective mass splitting parameters in the interactions. Our calculations show that the high energy neutrons and protons and their ratios from reactions at different incident energies provide a robust observable to study the momentum dependence of the nucleon effective mass splitting. However the sensitivity of effective mass splitting effect on the n/p yield ratios decreases with increasing beam energy, even though high energy proton and neutron are produced more abundantly at high beam energy. Our calculations show that the optimum incident energy to study nucleon effective masses is between 100-200 MeV per nucleon.
139 - Bao-An Li , Macon Magno 2020
Background: The nuclear symmetry energy $E_{sym}(rho)$ encodes information about the energy necessary to make nuclear systems more neutron-rich. While its slope parameter L at the saturation density $rho_0$ of nuclear matter has been relatively well constrained by recent astrophysical observations and terrestrial nuclear experiments, its curvature $K_{rm{sym}}$ characterizing the $E_{sym}(rho)$ around $2rho_0$ remains largely unconstrained. Over 520 calculations for $E_{sym}(rho)$ using various nuclear theories and interactions in the literature have predicted several significantly different $K_{rm{sym}}-L$ correlations. Purpose: If a unique $K_{rm{sym}}-L$ correlation of $E_{sym}(rho)$ can be firmly established, it will enable us to progressively better constrain the high-density behavior of $E_{sym}(rho)$ using the available constraints on its slope parameter L. We investigate if and by how much the different $K_{rm{sym}}-L$ correlations may affect neutron star observables. Method: A meta-model of nuclear Equation of States (EOSs) with three representative $K_{rm{sym}}-L$ correlation functions is used to generate multiple EOSs for neutron stars. We then examine effects of the $K_{rm{sym}}-L$ correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars. Results:The $K_{rm{sym}}-L$ correlation affects significantly both the crust-core transition density and pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars especially at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but can not distinguish the three representative $K_{rm{sym}}-L$ correlations considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا