Do you want to publish a course? Click here

The Wide Field Infrared Survey Telescope: 100 Hubbles for the 2020s

311   0   0.0 ( 0 )
 Added by David H. Weinberg
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Wide Field Infrared Survey Telescope (WFIRST) is a 2.4m space telescope with a 0.281 deg^2 field of view for near-IR imaging and slitless spectroscopy and a coronagraph designed for > 10^8 starlight suppresion. As background information for Astro2020 white papers, this article summarizes the current design and anticipated performance of WFIRST. While WFIRST does not have the UV imaging/spectroscopic capabilities of the Hubble Space Telescope, for wide field near-IR surveys WFIRST is hundreds of times more efficient. Some of the most ambitious multi-cycle HST Treasury programs could be executed as routine General Observer (GO) programs on WFIRST. The large area and time-domain surveys planned for the cosmology and exoplanet microlensing programs will produce extraordinarily rich data sets that enable an enormous range of Archival Research (AR) investigations. Requirements for the coronagraph are defined based on its status as a technology demonstration, but its expected performance will enable unprecedented observations of nearby giant exoplanets and circumstellar disks. WFIRST is currently in the Preliminary Design and Technology Completion phase (Phase B), on schedule for launch in 2025, with several of its critical components already in production.



rate research

Read More

The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) is a high-contrast imager and integral field spectrograph that will enable the study of exoplanets and circumstellar disks at visible wavelengths. Ground-based high-contrast instrumentation has fundamentally limited performance at small working angles, even under optimistic assumptions for 30m-class telescopes. There is a strong scientific driver for better performance, particularly at visible wavelengths. Future flagship mission concepts aim to image Earth analogues with visible light flux ratios of more than 10^10. CGI is a critical intermediate step toward that goal, with a predicted 10^8-9 flux ratio capability in the visible. CGI achieves this through improvements over current ground and space systems in several areas: (i) Hardware: space-qualified (TRL9) deformable mirrors, detectors, and coronagraphs, (ii) Algorithms: wavefront sensing and control; post-processing of integral field spectrograph, polarimetric, and extended object data, and (iii) Validation of telescope and instrument models at high accuracy and precision. This white paper, submitted to the 2018 NAS Exoplanet Science Strategy call, describes the status of key CGI technologies and presents ways in which performance is likely to evolve as the CGI design matures.
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. This paper describes an Interim DRM. The DRM will be completed in 2012.
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASAs James Webb Space Telescope (henceforth JWST), ESAs Euclid mission, and the NSFs ground-based Large Synoptic Survey Telescope (henceforth LSST), and again to reduce overall mission cost, while staying faithful to NWNH. This report presents both DRM1 and DRM2.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope (WFIRST) as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Project Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality mirror assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The option of adding an on-axis, coronagraphic instrument would enable imaging and spectroscopic studies of planets around nearby stars. This document presents the final report of the SDT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا