Rogue Waves as Self-Similar Solutions on a Background: A Direct Calculation


Abstract in English

In the present work, we explore the possibility of developing rogue waves as exact solutions of some nonlinear dispersive equations, such as the nonlinear Schrodinger equation, but also, in a similar vein, the Hirota, Davey-Stewartson, and Zakharov models. The solutions that we find are ones previously identified through different methods. Nevertheless, they highlight an important aspect of these structures, namely their self-similarity. They thus offer an alternative tool in the very sparse (outside of the inverse scattering method) toolbox of attempting to identify analytically (or computationally) rogue wave solutions. This methodology is importantly independent of the notion of integrability. An additional nontrivial motivation for such a formulation is that it offers a frame in which the rogue waves are stationary. It is conceivable that in this frame one could perform a proper stability analysis of the structures.

Download